太空中的生物反应器可应用于从基础科学到微生物工厂的各个领域。在微重力环境下监测生物反应器在流体、通气、传感器尺寸、样品量以及培养基和培养物的扰动方面都存在挑战。我们介绍了一个小型生物反应器开发案例研究,以及一种监测酵母培养物溶解氧、pH 值和生物量的无创方法。针对系统容量 60 毫升和 10.5 毫升,测试了两种不同的生物反应器配置。对于这两种配置,光学传感器阵列 PreSens SFR vario 都会自动收集数据。使用直径为 7 毫米、固定在采样室底部的化学掺杂点监测培养物中的氧气和 pH 值。当点分别与氧分子和氢离子反应时,会发出 DO 和 pH 的荧光信号。使用以 605 nm 为中心的光反射率来感测生物量。光学阵列有三个光检测器,每个变量一个,它们返回的信号经过预校准和后校准。对于需要氧气和呼吸二氧化碳的异养培养,与光学阵列同轴的中空纤维过滤器可给细胞供氧并去除二氧化碳。这提供了足以维持稳定状态条件下有氧呼吸的氧气水平。比较并讨论了两个生物反应器中酵母代谢的时间序列。生物反应器配置可以很容易地修改为自养培养,从而增强二氧化碳并去除氧气,这是光合藻类培养所必需的。
我们提出了一种基于热荧光的低频场测量和成像新方法。在介绍了该技术的原理和实验装置之后,我们展示了通过记录发光磁性薄膜的荧光信号,可以在相对较大的表面上几乎瞬间获得磁场制图。各种来源发射的电磁场的表征是一个重要问题,无论是民用还是国防应用(磁线圈、天线、电信、雷达、民用和军用航空、医学等)。可以通过单个探针执行电磁场测量以获得空间局部结果。对于可视化磁场的空间分布(历史上从沉积在一张纸上的铁屑中获得),有几种已知技术可用 [1 - 3]。使用移动探针的扫描系统是一种常见的商业解决方案 [4]。随着法拉第磁光成像 [5] 的发展,以及电子显微镜中洛伦兹或全息技术 [6] 的小规模发展,静态磁场的直接成像已经发展起来。集成电路和超大规模集成 (VSLI) 设备的近场测量可以通过使用空间分辨率为几百微米或更低的小探针扫描来解决 [6,7]。这种分辨率确实非常适合 EMC 和 EMI 测量,因此受到国际标准 (IEC61967 和 IEC62132) 的推荐 [8]。对于动态场观测,适当的方法是基于频闪成像,通过铁磁传感器的磁化变化实时演变磁场,直至亚纳秒级(例如,参见 M.R. 的评论。Freeman 等人。[10]。然而,这些技术对于常规表征来说相当复杂且耗时。在相对较短的时间内获得磁场映射更加困难。具有竞争力的
将CRISPR/CAS9系统作为基因编辑工具的功能彻底改变了该领域,这是由于其易于设计和高灵敏度。CRISPR/CAS9系统有效地规避了先前基因编辑工具的局限性,并为基因组编辑的新时代铺平了道路。但是,更多的研究指出了CRISPR/CAS9自身的局限性。该技术的主要缺陷之一是脱靶效应的频率相对较高。为了克服这些障碍,最近已经开发了一种称为Prime Editing(PE)的第四代基因编辑工具。Prime编辑具有三个组成部分:Cas9 nickase,逆转录酶和Prime Editing Guide RNA(Pegrna)。PEGRNA可以进一步分解为间隔序列,支架,底漆结合位点和逆转录(RT)模板。RT模板已经包括可以通过逆转录酶转录的所需序列。这种新合成的DNA取代了原始链,提供了非常精确的编辑,而不是CRISPR/CAS9系统产生的随机插入/删除敲除。为此,我们进行了一系列研究,以比较CRISPR/CAS9系统和主要编辑的编辑效率。由CRISPR/CAS9系统敲除靶基因EGFR,已通过T7E1测定和质粒报告系统验证,这是强烈的绿色荧光信号所证明的。下一代测序已量化了Prime编辑的编辑率以及CRISPR/CAS9的编辑速率。ngs数据显示CRISPR/CAS9系统的高编辑频率,而未检测到Prime编辑的编辑。这种结果的可能原因之一是缺乏高通量实验来优化EGFR基因特异性的PEGRNA成分。
CRISPR/CAS9基因编辑的新兴和有希望的生物技术方法正在彻底改变作物的改善。然而,在转化或之后或之后的正面选择,较低的及时性和劳动力的性质以及随后对突变的识别是其农业应用的主要挑战,是从上游(高发射)突变体筛选到下游商业商业生产(He and Zhao,Zhao,2020)。尽管已使用视觉标记,尤其是包括绿色荧光蛋白(GFP)和红色荧光蛋白(RFP)的荧光标记,已被用于快速可视化转基因材料(Qi等人,2020年)(2020年)(2020年),但成本效益和非侵蚀性crispr-secr-dectr-decration and Crist-crist crist-crist-defty Gene and noff Chromient in Infandy in Infcantion工具仍在其中,其构成的工具是其构成的工具。 (Callaway,2018年)。此外,需要特殊的光源来可视化荧光信号,这增加了荧光标记物的应用成本和不便,尤其是在领域条件下。我们开发了一个可视化工具箱,即Vimebox(Visual Maize Editing Toolbox),用于选择玉米(Zea Mays)中的正变换体。在Vimebox系统中,表达Cas9的矢量包括一个基因盒,该盒子包含从组织特异性启动子表达的可见标记物;通过可见标记易于分离的无CAS9核也正在经过基因编辑。vimebox提供了两个优点:(i)它可以增强dsred2的表达,这使得含有cas9的种子在自然光中可见,并且不会影响基因组编辑的效率或植物的发展。(ii)它对不同种子组织有效,例如,使用特异性启动子或启动子优先表达在胚胎或核龙中。此外,Vimebox在不同的其他场景中还具有潜在的应用。
摘要 目的 改善 IBD 患者选择和生物疗法(如维多珠单抗)的开发需要彻底了解作用机制和靶标结合,从而提供个性化的治疗策略。我们的目的是可视化静脉注射荧光标记的维多珠单抗 vedo-800CW 的宏观和微观分布,并使用荧光分子成像 (FMI) 识别其靶细胞。 设计 进行了 43 次 FMI 程序,包括内窥镜检查期间的宏观体内评估,然后进行宏观和微观体外成像。在 A 期,患者在内窥镜检查前接受 4.5 毫克、15 毫克 vedo-800CW 或无示踪剂的静脉注射。在 B 期,患者接受 15 毫克 vedo-800CW,然后接受未标记的(亚)治疗剂量的维多珠单抗。结果 FMI 定量显示炎症组织中 vedo-800CW 荧光强度呈剂量依赖性增加,15 mg(153.7 au(132.3–163.7))是最适合的示踪剂剂量,而 4.5 mg(55.3 au(33.6–78.2))则为最合适剂量(p=0.0002)。此外,在给予治疗剂量的未标记维多珠单抗后给予 vedo-800CW 时,荧光信号降低了 61%,表明炎症组织中的靶标已饱和。荧光显微镜和免疫染色显示,维多珠单抗渗透到发炎的粘膜中并与几种免疫细胞类型相关,最显著的是与浆细胞相关。结论这些结果表明 FMI 有望确定炎症靶组织中药物的局部分布并识别药物靶细胞,为靶向药物在 IBD 中的应用提供了新的见解。试验注册号 NCT04112212。
叶绿素荧光发射是由吸收的光能引起的,这些光能不会以热量的形式消散,也不会用于植物的光合作用反应。光合作用分为两个不同的部分,即光反应和二氧化碳 (CO 2 ) 固定。在光反应中,光能被用来生成氧化蛋白质复合物,该复合物能够在光系统 II (PSII) 中从水中提取电子,同时重新激发提取的电子以还原光系统 I (PSI) 中的 NADP +。这些“光收集”反应导致 ATP 和还原力(还原铁氧还蛋白和 NADPH)的形成,随后通过卡尔文 - 本森 - 巴沙姆循环进行 CO 2 固定。叶绿素 a 荧光分析可以确定直接用于光化学的吸收光能量,并估计生物或非生物胁迫下的光合作用效率 ( Moustakas 等人,2021 年;Moustakas,2022 年)。叶绿素 a 荧光信号可以根据光合作用活性进行解释,以获得有关光合作用机构状态的信息,尤其是光系统 II (PSII) 的状态信息 ( Murchie 和 Lawson,2013 年;Moustakas 等人,2021 年)。叶绿素荧光测量已广泛用于探测光合作用机制的功能和筛选不同作物以耐受各种压力和营养需求(Guidi 和 Calatayud,2014 年;Kalaji 等人,2016 年;Sperdouli 等人,2021 年;Moustakas 等人,2022a 年)。使用脉冲幅度调制 (PAM) 方法可以主要计算引导至 PSII 进行光化学反应的吸收光能量,这些能量通过非光化学猝灭 (NPQ) 机制以热量形式耗散或通过不太明确的非辐射荧光过程耗散,分别标记为 F PSII 、F NPQ 和 F NO ,它们的总和等于 1(Kramer 等人,2004 年)。在本研究中,我们总结了本期特刊中的文章,为读者更新了该主题,并讨论了叶绿素荧光的当前应用
急性髓样白血病(AML)是一种遗传异质性恶性肿瘤,其特征是髓样前体细胞的克隆膨胀。基因组分析的进步增强了我们对AML发病机理的理解,从而鉴定了复发突变,包括TP53,FLT3,MUC4,RAS,RAS和IDH1/2。这些突变显着影响治疗反应和预后,TP53突变赋予了较差的结果和对常规疗法的抵抗力。尽管基于Venetoclax的方案出现了,但阻力机制仍然存在,因此需要发展新型的治疗策略。本研究旨在研究药物组合使用体外AML细胞系和体内斑马鱼胚胎异种移植模型的AML治疗的功效。具体来说,我们专注于两种药物组合。 Pan-RAF抑制剂LY3009120与MTOR抑制剂Sapanisertib(指定为LS)和JAK1/2抑制剂ruxolitinib结合使用ERK抑制剂Ulixertinib(指定为RU)。该研究整合了实时细胞活力测定,异种移植成像和基因组分析,以评估药物疗效并探索治疗反应与突变谱之间的相关性,尤其是TP53,FLT3和MUC4突变。与基于Venetoclax的治疗可降低AML细胞系的细胞活力相比,LS和RU这两种组合都表现出了优异的功效。LS组合显示MOLM16和SKM细胞中细胞活力的显着降低,而RU表现出可比的功效,毒性较低。在斑马鱼胚胎中,LS组合有效地抑制了异种移植的人AML细胞的增殖,这表明荧光信号降低,表明细胞死亡。RU组合还破坏了生存信号通路,显示了作为治疗策略的希望。此外,在药物反应和突变谱之间确定了与TP53,FLT3和MUC4突变之间的相关性,从而显着影响对LS和RU组合的敏感性。这些发现支持LS和RU作为当前临床方案的有效替代方案的进一步发展,对个性化AML治疗的影响。
焦磷酸测序:Roche模板由EMPCR 1制备,其中1-20万珠沉积在PTP井中。较小的珠,带有连接的硫酸酶和荧光素酶围绕模板珠。单个DNTP依次流过井,以预定的顺序分配。在掺入补体DNTP时,释放的PP I被转换为ATP,从荧光素蛋白到羟基二耐蛋白的氧化产生光。读取平均400个基础作为流程图。对于均聚物,重复多达六个核苷酸,添加的DNTP的数量与光信号成正比。插入是最常见的错误类型,其次是删除。通过连接测序:将约1亿个EMPCR的模板珠沉积在载玻片上。在退火时,添加了1,2个探针的库。适当的条件使选择性杂交和探针结扎到互补位置。1,2探针的第一个(y)和第二(z)位置被设计为审讯库,因此16个二核苷酸由四种染料编码。在四色成像之后,将带状的1,2探针化学裂解以产生5'-PO 4组(P)。杂交,连接,成像和裂解的循环又重复了六次。然后从模板中剥离扩展引物,并使用N – 1底漆进行第二个连接弹,该底漆将询问底座重置为左侧的一个位置。询问每个基础两倍,提高了颜色调用的准确性。随后发生了七个连接周期,然后再进行三个结扎弹。然后将35个数据位组成的字符串在色彩空间中编码,然后对准参考基因组以解码DNA序列。替换是最常见的错误类型。可逆终结器:DNA片段的Illumina Bridge放大是在载玻片的八个通道上随机分布的,高密度向前和反向引物共价附加到其上。固相扩增可从单个ssDNA模板产生约8000万个MC。将底漆退火到每个MC中模板的自由末端。聚合酶延伸,然后终止从四个RTs组中的DNA合成,每组用不同的染料标记。未合并的RT被洗净,通过四颜色成像进行基础识别,并通过化学裂解去除阻塞和染料组以允许下一个周期。给定MC的颜色图像提供了〜45个基础的读取。替换是最常见的错误类型。使用RTS进行单分子测序:Helicos数十亿个未夸大的ssDNA模板是用poly(da)尾巴制备的,这些尾巴与聚(DT)引物杂交,共同连接到载玻片上。对于一通测序,该引物 - 模板复合物就足够了。两通序测序涉及复制模板链,删除原始模板,并退火向表面(未显示)。与Illumina的RT不同,这四个Helicos RT用相同的染料标记,并以预定的顺序单独分配。融合事件导致荧光信号。使用单分子消除了Dephasing的问题,其中给定MC内的数千个复制模板不会有效地扩展其引物。删除是最常见的误差类型,可以通过提供约25个基本共识读取的两次测序可大大降低。的应用和挑战100篇论文描述了这些创新的成果。虽然改进继续,但读取长度限制,错误类型和频率显着影响组装策略。对于简短(<100个基本)读取平台,通过映射到参考基因组来指导组装。结合Sanger和Roche数据(100个基本读数)改善了从头组件2,并且随着焦磷酸测序读取长度的改进,使用混合Roche(250键读数)和Illumina数据进行了改善,已经描述了从头组装。最近使用Roche 4和Illumina平台报告了第一个个性化基因组测序项目。Roche,Illumina和AB平台在1,000个基因组项目中被用于生成人类遗传变异的详细图表以及人类微生物组项目,以将微生物组动态与人类健康相关联。应用不限于测序基因组。共识计数分析5最近出现了,从而实现了转录因子结合,mRNA剪接,DNA甲基化,小RNA,染色质结构和DNase超敏位点的全局分析。配对的测序方案。这些不仅对从头组件很重要,而且对于识别结构变化和映射mRNA剪接同工型。展望未来,太平洋生物科学,多佛系统(Polonator G.007),Visigen Biotechnologies,Lasergen,Inc。,Intelligent Bio-Symys,完整的基因组学和牛津Nanopore技术等公司的平台开发。