Ising模型首先是由Wilhelm Lenz(1920)提出的,他将其作为一个问题向他的学生恩斯特·伊辛(Ernst ising)提出了问题。ising(1925)求解了1-D ISING模型,并发现没有发生任何相变。2-D ISING模型的分析解决方案更为复杂,是Lars Onsager(1944)获得的。对于3-D模型,没有分析解决方案。蒙特卡洛方法以在众多合奏中获得统计平均值,通过该平均值可以轻松地解决任何维度的模型。本研究在模拟2-D ISING模型的相变时执行了大都市和集群算法。另外,由于可以将N量子系统映射到(n+1)-D经典系统,因此也研究了2-D量子ISING模型的相变。基于有限的尺寸缩放定理,与文献值相比,相比精确度以令人满意的精度计算。
图2。(a)使用GCMC模拟在87.3 K.交叉点(绿色圆圈)和通道(黄色圆圈)孔(黑色圆圈(黑色圆圈))中使用的GCMC模拟获得的PCN-224的AR吸附等温线。封闭和开放圆圈分别对应于吸附和解吸等温线。(b)从吸附发作到完整填充的不同压力,在通道(绿色)和相交(黄色)孔之间的吸附分子分布的特征快照。每个隔室中的平均分子数在每个快照下面指示。(a)中的垂直虚线表示(b)中快照的压力。框架原子颜色代码:o,红色; H,隐藏; C,灰色; n,蓝色; ZR,紫罗兰。
可以证明,UCB的遗憾在渐近上是最佳的,请参见Lai和Robbins(1985),渐近的适应性分配规则;或2018年Bandit算法书籍的第8章在线可在线提供,网址为https://banditalgs.com/。
扩散模型已成为机器学习中生成建模的重要方法。这些模型是通过模拟一些“破坏性”随机过程来训练的,这些随机过程在训练数据样本中初始化,并且具有易于采样的限制分布。通过学习如何逆转随机过程来获得生成模型。扩散模型的大多数应用都用于连续数据,并使用高斯扩散作为随机过程。但是,相同的想法也可以通过适当的破坏过程选择,例如基于离散的马尔可夫链和吸收状态的引入。通过指导进一步提高了扩散生成模型的性能和适用性,这是一种基于某些辅助信息或外部模型来指导生成过程的技术。指导既可以用于有条件生成(例如带有分类器指导)和改善样本质量(鉴别器指导)。在本演讲中,我将讨论如何将顺序的蒙特卡洛用于扩散模型的指导。我将重点放在不容易适用的基于常规得分的指导技术的离散设置上。基于与FilipEkströmKelvinius的联合工作(自回旋扩散模型的歧视指南,AISTATS 2024,https://arxiv.org/abs/2310.15817)
蒙特卡洛(MC)方法是一种用于增强学习问题的技术。它们通过平均与环境相互作用的完整互动中的所有状态平均样本回报来工作。尽管有应用,但尚未完全理解它们的收敛性。操作性策略迭代是MC方法的一种变体,具有一些附加约束,可以保证融合到最佳解决方案。但是,现有的证据不是最直接的证据,通常是从难以访问的出版物中引用的结果。本论文是对该主题的文献回顾,在一个地方完全介绍了融合的原始证明。它还讨论了简化证明的尝试的尝试,为将来的研究提供了可能的方向。
Monte Carlo Tree Search(MCTS)是一种随机计划算法,可以为两人游戏中的动作提供建议,而无需启发式启发式。在这项工作中,我们描述了一种量子算法,以加快在执行多个此类推出的MCT变体中执行的随机“随机推出”步骤。引入了另一种量子算法,该算法加快了MCTS实例集合的计算。作为开发的技术的推论,提出了一种量子算法,用于估算任意(随机)长度的保单引导在任意(随机)环境中的期望值或最大化的第一步。此步行是由初始状态,策略函数和过渡功能定义的,其值通过在所采用的完整路径上定义的任意评估功能分配给了这样的walk。相对于最著名的经典算法,发现的所有加速度都是二次的。
平行MCMC技术使用多个建议来获得超过MCMC算法(例如大都市)的效率提高(Metropolis等人。1953; Hastings 1970)及其后代仅使用一个建议。Neal(2003)首先通过提出候选状态的“池”并使用动态编程来选择有效的MCMC过渡来推断隐藏的马尔可夫模型状态。接下来,Tjelmeland(2004)考虑了一般环境中的推论,并显示了如何维持任意数字P的详细平衡。考虑在R D上定义的概率分布π(dθ),该概率密度π(θ)相对于Lebesgue度量,即π(dθ)=:π(θ)dθ。要从目标分布π生成样品,我们制作了满足
量子退火 (QA) 的出现是未来量子计算发展的重要一步,也将极大地促进统计物理和材料科学建模的发展。到目前为止,QA 在这些领域的应用仍然很少,其中包括确定具有长程弹性相互作用的平衡微结构 1 、横向场 Ising 模型中的相变 2 、通过 Shastry-Sutherland 模型研究受挫磁系统的能态 3 以及设计超材料 4 。另一个例子是结合使用量子退火器和玻尔兹曼机来采样自旋玻璃并预测 MoS 2 层的分子动力学数据 5 。更一般地说,由 D-Wave 公司实施的 QA 可以有效地找到离散优化问题的基态配置,在学术界和工业界都有许多应用 6 – 10 。 QA 的概念是在低温下以明确定义的基态初始化系统的哈密顿量,然后平滑地转换能量景观,使其代表所需的优化问题。如果仔细执行这种绝热变换,系统最终会处于目标哈密顿量的基态,因此可以找到优化问题的全局最小值。然而,在实践中,准备、转换和读出过程并不是完全绝热、无噪音和与环境分离的,因此有时会发现能量更高的状态,尤其是与简并态 11 或太小的能隙结合时。因此,对于典型的 QA 应用,需要多次重复和读出来确定真实基态。在本文中,我们证明了该技术的这一缺陷实际上可以转化为优点,因为它可以非常有效地确定有限温度的热力学性质。从材料科学的角度来看,T = 0K 时的基态配置通常只对许多实际应用具有有限的意义。例如,对于铁磁体,所有自旋都排列在基态,而对于有限温度,热涨落会导致有限的关联长度、相变和温度相关的磁化。对此类属性进行统计建模的传统方法是使用蒙特卡罗 (MC) 采样技术,因为由于相空间的巨大规模,通常无法明确计算配分函数。此类计算最突出的方法可能是使用 Metropolis 转移概率生成离散马尔可夫链,这会生成一系列遵循玻尔兹曼统计的配置,因此可以通过更容易地计算这些马尔可夫链上的时间平均值来表达集合平均值 12、13。在实践中,根据玻尔兹曼分布 p ∼ exp ( − β ∆ E ) (其中 β = 1 / k BT ),从一个状态到另一个状态的转变正在发生,其概率取决于两个配置之间的能量差 ∆ E 。通常,这种方法在低温下效率低下,因为新配置的拒绝率非常高,因此在局部最小值中捕获的相空间采样不足,导致对所需热力学性质的预测有噪声。另一种重要的采样策略是由 Wang 和 Landau 开发的,他们使用非马尔可夫算法通过平坦直方图技术提取状态密度,从中可以计算出所有所需的热力学性质 14 。除了这些主要技术之外,Dall 等人还开发了一种在低温下快速采样玻尔兹曼分布的算法。然而,这种算法最适合具有短程相互作用的系统 15 。另一种公平采样基态和