摘要本文探讨了技术奇异性的概念以及可能加速或阻碍其到来的因素。蝴蝶效应被用作一个框架,以了解复杂系统中看似很小的变化如何具有明显且无法预测的结果。在第二节中,我们讨论了可以加快技术奇异性的到来的各种因素,例如人工智能和机器学习的进步,量子计算的突破,脑部计算机界面的进展以及人类增强的进步以及纳米技术的发展以及纳米技术的发展和3D印刷。在第三节中,我们研究了可能延迟或阻碍技术奇异性的到来的因素,包括AI和机器学习中的技术局限性和挫折,围绕AI的道德和社会关注,及其对就业和隐私的影响,缺乏足够的投资,对研究和发展的投资,以及监管性的和政治的不稳定。第四节探讨了这些因素的相互作用以及它们如何影响蝴蝶效应。最后,在结论中,我们总结了所讨论的要点,并强调考虑蝴蝶效应在预测技术未来中的重要性。我们呼吁继续研究技术,以塑造其未来并减轻潜在风险。关键字:技术奇异性,蝴蝶效应,人工智能,复杂系统,量子计算。这个概念首先是由数学家和计算机科学家Vernor Vinge在1993年的文章《即将到来的技术奇异之处:如何在后人类时代生存》中引入的(Vinge,1993)。1-引言技术奇异性是一个假设的未来事件,其中人工智能超过了人类的智力,并具有递归的自我完善,从而导致技术进步的指数增长。从那时起,这一直是科学和技术社区中许多辩论和讨论的主题。技术奇异性的观念是基于这样的观念:随着人工智能变得更加先进,它最终将变得有能力提高自身,从而迅速提高其能力(Kurzweil,2005年)。这种自我完善可能会导致智力爆炸,在这种情况下,AI变得如此先进,以至于它超过了人类的智能,并能够解决问题并创造人类无法理解的创新。技术奇点的关键特征之一是加速回报的想法。这意味着,随着技术的提高,其进度率也会增加,从而导致其能力呈指数增长(Kurzweil,2001)。这可能会导致失控的效果,其中
在虚拟现实 (VR) 中,稳态视觉诱发电位 (SSVEP) 可用于通过脑信号与虚拟环境进行交互。然而,SSVEP 诱发刺激的设计通常与虚拟环境不匹配,因此会破坏虚拟体验。在本文中,我们研究了不同适应性刺激设计,以融入虚拟环境。因此,我们创造了不同形状的虚拟蝴蝶。形状从矩形翅膀到圆形翅膀,再到真实蝴蝶的翅膀形状。这些蝴蝶通过不同的动画(闪烁或拍打翅膀)引发 SSVEP 反应。为了评估我们的刺激,我们首先从文献中提取了适合 SSVEP 反应的频率。在第一项研究中,我们确定了在 VR 中产生最佳检测精度的三个频率。我们在第二项研究中使用这些频率来分析使用我们的刺激设计的检测精度和外观评级。我们的工作为融入虚拟环境并仍能引发 SSVEP 反应的 SSVEP 刺激的设计提供了见解。
