摘要本文探讨了技术奇异性的概念以及可能加速或阻碍其到来的因素。蝴蝶效应被用作一个框架,以了解复杂系统中看似很小的变化如何具有明显且无法预测的结果。在第二节中,我们讨论了可以加快技术奇异性的到来的各种因素,例如人工智能和机器学习的进步,量子计算的突破,脑部计算机界面的进展以及人类增强的进步以及纳米技术的发展以及纳米技术的发展和3D印刷。在第三节中,我们研究了可能延迟或阻碍技术奇异性的到来的因素,包括AI和机器学习中的技术局限性和挫折,围绕AI的道德和社会关注,及其对就业和隐私的影响,缺乏足够的投资,对研究和发展的投资,以及监管性的和政治的不稳定。第四节探讨了这些因素的相互作用以及它们如何影响蝴蝶效应。最后,在结论中,我们总结了所讨论的要点,并强调考虑蝴蝶效应在预测技术未来中的重要性。我们呼吁继续研究技术,以塑造其未来并减轻潜在风险。关键字:技术奇异性,蝴蝶效应,人工智能,复杂系统,量子计算。这个概念首先是由数学家和计算机科学家Vernor Vinge在1993年的文章《即将到来的技术奇异之处:如何在后人类时代生存》中引入的(Vinge,1993)。1-引言技术奇异性是一个假设的未来事件,其中人工智能超过了人类的智力,并具有递归的自我完善,从而导致技术进步的指数增长。从那时起,这一直是科学和技术社区中许多辩论和讨论的主题。技术奇异性的观念是基于这样的观念:随着人工智能变得更加先进,它最终将变得有能力提高自身,从而迅速提高其能力(Kurzweil,2005年)。这种自我完善可能会导致智力爆炸,在这种情况下,AI变得如此先进,以至于它超过了人类的智能,并能够解决问题并创造人类无法理解的创新。技术奇点的关键特征之一是加速回报的想法。这意味着,随着技术的提高,其进度率也会增加,从而导致其能力呈指数增长(Kurzweil,2001)。这可能会导致失控的效果,其中
在虚拟现实 (VR) 中,稳态视觉诱发电位 (SSVEP) 可用于通过脑信号与虚拟环境进行交互。然而,SSVEP 诱发刺激的设计通常与虚拟环境不匹配,因此会破坏虚拟体验。在本文中,我们研究了不同适应性刺激设计,以融入虚拟环境。因此,我们创造了不同形状的虚拟蝴蝶。形状从矩形翅膀到圆形翅膀,再到真实蝴蝶的翅膀形状。这些蝴蝶通过不同的动画(闪烁或拍打翅膀)引发 SSVEP 反应。为了评估我们的刺激,我们首先从文献中提取了适合 SSVEP 反应的频率。在第一项研究中,我们确定了在 VR 中产生最佳检测精度的三个频率。我们在第二项研究中使用这些频率来分析使用我们的刺激设计的检测精度和外观评级。我们的工作为融入虚拟环境并仍能引发 SSVEP 反应的 SSVEP 刺激的设计提供了见解。
蝴蝶效应这一概念源自混沌理论,强调微小变化如何对复杂系统产生重大且不可预测的影响。在人工智能公平性和偏见的背景下,蝴蝶效应可能源于多种来源,例如算法开发过程中的小偏差或倾斜的数据输入、训练中的鞍点或训练和测试阶段之间数据分布的变化。这些看似微小的改变可能会导致意想不到的、严重的不公平结果,对代表性不足的个人或群体产生不成比例的影响,并延续先前存在的不平等。此外,蝴蝶效应可以放大数据或算法中固有的偏见,加剧反馈回路,并为对抗性攻击创造漏洞。鉴于人工智能系统的复杂性及其社会影响,彻底检查对算法或输入数据的任何更改是否可能产生意想不到的后果至关重要。在本文中,我们设想了算法和经验策略来检测、量化和减轻人工智能系统中的蝴蝶效应,强调了解决这些挑战以促进公平和确保负责任的人工智能发展的重要性。
2016 年出版的《2026 年艾滋病毒/艾滋病战略》的设计灵感源自斯蒂芬·安德鲁斯的《蝴蝶效应》(2014 年,布面油画,60x40 英寸)。这位 1956 年出生于加拿大安大略省萨尼亚的艺术家这样评价这件作品:“这件作品背后的想法之一就是人们所熟知的‘蝴蝶效应’。这是混沌理论的一个理论假设,它考虑了一个微小的动作,比如蝴蝶翅膀的扇动,可能导致截然不同的后果。”本行动计划感激地继续从这件美丽的作品及其信息中汲取灵感并加以阐述。
动态系统。(v)通过使用软件模拟非线性系统和混乱系统,为参与者提供动手体验,以观察不同混沌系统及其吸引子的行为。(vi)探索蝴蝶效应的概念,并增强参与者了解小变化如何导致结果的显着差异。(vii)通过使用算法生成分形的实践练习来增强对参与者的理解,并探索产生的分形的自相似特性。(viii)通过基于混乱的加密或数据安全机制,提供实用问题及其解决方案的暴露。(ix)提供了设计和建模混乱系统的练习,并培训参与者创建自己的混乱模型并分析其行为。(x)探讨混乱理论在物联网和密码域中的含义和应用。课程目录L1:动力学系统简介:逻辑图。l2:时间逆转不变性,可观察的数量,不断发展和不变概率度量。t1:logistic图和其他一维离散动态系统的发展和不变概率的模拟。l3:liouville方程。l4:求解liouville方程式和使用fokker-planck方程。t2:简单连续的一维动力系统的发展和不变概率的模拟以及概率的数值计算。l5:牙齿和混合。l10:玻尔兹曼方程。L6:混乱理论和非线性系统简介。蝴蝶效应和对初始条件的敏感依赖性。T3:混沌系统的模拟。产生分形并理解自相似性。l7:混沌系统中的分形和自相似性。l8:混乱和奇怪吸引者的动态。t4:物联网设备和网络中的混乱应用程序。设计混乱的系统模型。l9:混乱及其在物联网和密码学中的应用。L11:简单动力学系统的线性和精确响应的比较。L12:耗散函数和一般反应理论。 T5:简单分子动力学系统中的响应。L12:耗散函数和一般反应理论。T5:简单分子动力学系统中的响应。
加扰是存储在局部自由度中的信息扩散到量子系统的多体自由度的过程,从而无法被局部探测器访问,并且显然会丢失。加扰和纠缠可以调和看似不相关的行为,包括孤立量子系统的热化和黑洞中的信息丢失。在这里,我们证明保真非时序相关器 (FOTOC) 可以阐明加扰、纠缠、遍历性和量子混沌(蝴蝶效应)之间的联系。我们为典型的 Dicke 模型计算了 FOTOC,并表明它们可以测量子系统 Rényi 熵并提供有关量子热化的信息。此外,我们说明了为什么 FOTOC 可以在没有有限尺寸效应的混沌系统中实现量子和经典 Lyapunov 指数之间的简单关系。我们的研究结果为实验性使用 FOTOC 探索加扰、量子信息处理的界限以及可控量子系统中黑洞类似物的研究开辟了道路。
复杂性科学是一个总称,涵盖对“复杂”系统的研究和表征——系统由多个相互依赖的组成部分组成,这些组成部分在不同层面上运行和相互作用(Fernandez 等人,2013 年)。这种复杂系统通常表现出“混沌”行为。混沌系统不是指无序或混乱的状态,而是指不可预测性和无序性,通常是多种非线性相互作用的结果(Faure 和 Korn,2001 年)。因此,系统中的微小变化可能导致指数变化(一种被称为“蝴蝶效应”的属性)。例如,地球大气层在任何时间和空间点都是(几乎无限)多个变量(例如温度、粒子组成和云密度)相互作用的结果,这使得任何长期预测都具有挑战性。尽管如此,复杂性科学的总体思想不一定是建立做出精确预测的方法,而是为表征给定复杂系统的长期轨迹提供一些见解(Faure & Korn,2001)。这些原则源于数学的一个分支,即混沌理论(概述见 Thietart & Forgues,1995),该理论已促使多个学科(例如环境科学、气象学和生物学)采用复杂动力系统的框架(Burggren & Monticino,2005;Kiel & Elliott,1996)。复杂性科学在非线性系统中的应用,称为“非线性动力学”,是一种新兴方法,在人体生理学和病理学研究中越来越受到关注(Ehlers,1995)。人类生理系统在理论上被概念化为复杂系统是有道理的,因为人类生理系统由多个组成子系统(无论是解剖学组件还是生理过程)组成,这些子系统在不同层面(即从分子到器官)不断相互作用,并与外部环境相互作用以维持体内平衡(Faure & Korn,2001)。基本假设是生理系统本质上是复杂的(Golbeter,1996),病理状态(或“动态疾病”,见Mackey & Glass,1977)可以用中断或异常的动态过程来表征。开创性的工作之一是
敏捷质量成本 (C O Q) 只是传统方法一小部分的 18 个原因 Ken Schwaber、Jeff Sutherland 和 Kent Beck 早在 1990 年代就通过第一手知识、应用和经验明确地知道 Scrum 和极限编程的质量成本 (CoQ) 远低于传统方法。即使是那些在 2001 年犹他州雪鸟城那个决定性的日子创造了“敏捷方法”一词并创建了“敏捷宣言”的人似乎也天生就知道敏捷的 CoQ 异常低。那么,CoQ 到底是什么?用最简单的术语来说,它是产品或服务在其整个生命周期(从概念到退役)中“实现符合要求的总成本”。构成质量工程成本的主要质量工程活动费用有四大类: 1.预防成本。在开发之前预防缺陷的成本(即培训、根本原因分析等)。2.评估成本。在交付之前独立评估产品和服务的成本(即检查、测试等)。3.内部故障成本。在交付之前修复有缺陷的产品和服务的成本(即返工、重新测试、报废等)。4.外部故障成本。交付后修复有缺陷产品和服务的成本(即保修、维修、召回等)。每种成本类型的相关费用在各个阶段都会以数量级增长。例如,假设每个缺陷的预防成本为 1.00 美元。那么,每个缺陷的评估成本为 10.00 美元,每个缺陷的内部故障成本为 100.00 美元,每个缺陷的外部故障成本为 1,000.00 美元。有证据表明,每个缺陷的外部故障成本可能高达 10,000 至 50,000 美元(如果想到汽车召回或飞机失事(在无谓的或集体的诉讼之后),这些成本可能高达数百万美元)。自 20 世纪 70 年代以来,人们就开始理解这些基本的经济比率,并用它来证明传统线性系统和软件工程方法的创建、推广、使用和监管的合理性。质量工程经济学家通常会估计在开发普通产品或服务过程中产生的缺陷总数(即 10,000 个缺陷)。然后,他们可以根据这四个类别之间的投资比率来估算质量成本。在组织中培养质量文化非常困难且成本高昂。也就是说,重视早期质量工程活动会降低成本,而重视后期质量工程活动会增加成本。因此,重点放在尽可能早的质量工程活动(即缺陷预防活动)上,尽管人们经常寻求使用所有四种质量活动和成本的平衡投资组合。尽管有这些模型,但大多数公司仍将其大部分活动投资于后两类(即失败成本)。这通常被称为“世界级质量”。这就像在奥运会上赢得金牌、成为冠军健美运动员或赢得世界杯一样。它需要在很长一段时间内投入大量资源,很少有人能做到这一点(即不到 5%)。传统技术需要花费数百万美元,耗时数十年,如果您孤注一掷地进行质量竞争,却输了,甚至可能导致破产。如今,一些公司专注于最后一类(即外部失败成本),经济模型表明,召回产品可能比 W. Edwards Deming 建议的“第一次就做对”更具成本效益。需要进行组织变革,以制度化早期质量工程活动或形成质量文化。组织变革非常困难,涉及改变根深蒂固的心理信念和人类行为。要取得成功,需要数十年、无数举措和数百万美元。活动、组织或对立行为越复杂,难度就越大。组织的微小变化都可能极其困难。您听说过“蝴蝶效应”吗?(即,一只蝴蝶在世界的某个地方扇动翅膀,可能会在其他地方引发飓风)?我就是那只蝴蝶,引发过许多飓风(即,最无害的词语和想法可能会引发一场大森林火灾)。传统方法的支持者喜欢指出,学术教科书方法强调使用平衡的质量工程活动组合。事实上,传统主义者倾向于将最早和成本最低的缺陷预防活动作为解决质量困境的答案。不幸的是,传统主义者未能指出实施这些做法非常困难、昂贵且耗时。几乎没有所谓的传统组织使用任何先进的质量工程活动。他们需要数十年和数千人。传统方法带有数千页的模型组合,推荐数百种活动、指标和工件。敏捷方法没有那么根深蒂固,没有数十页的手册,而且活动和工件很少。欢迎来到前线,堑壕战,为您的心、思想和灵魂而战。传统的质量工程实践不仅复杂、昂贵、耗时,而且它们需要大量人工、过时,并且来自工业时代。通常,它们没有足够强调缺陷预防,而专注于评估活动,如手动代码检查或后期大爆炸集成测试。此外,工业时代的哲学家错误地认为传统方法可以扩展到复杂的组织、产品和服务,以及需要数十年才能完成的数十亿美元的系统。传统方法对缺陷预防关注不够,过于关注评估活动,完全忽略了故障活动。此外,将工业时代的人工密集型评估活动错误地应用于庞大、复杂且风险很大的组织、产品、服务、预算和时间表,会加剧缺陷的扩散,而不是减轻缺陷。20 世纪 60 年代的大型机操作系统是人类有史以来建造的最早、最复杂的系统之一。随着人员和沟通路径的增加,生产力减慢,缺陷增加。现代排队理论和模型表明,大范围、时间表和预算会降低生产力并增加产生的缺陷数量。事实上,在大型复杂的技术密集型项目中,生产力会停止,缺陷会大量出现。
敏捷质量成本 (C O Q) 只是传统方法一小部分的 18 个原因 Ken Schwaber、Jeff Sutherland 和 Kent Beck 早在 1990 年代就通过第一手知识、应用和经验明确地知道 Scrum 和极限编程的质量成本 (CoQ) 远低于传统方法。即使是那些在 2001 年犹他州雪鸟城那个决定性的日子创造了“敏捷方法”一词并创建了“敏捷宣言”的人似乎也天生就知道敏捷的 CoQ 异常低。那么,CoQ 到底是什么?用最简单的术语来说,它是产品或服务在其整个生命周期(从概念到退役)中“实现符合要求的总成本”。构成质量工程成本的主要质量工程活动费用有四大类: 1.预防成本。在开发之前预防缺陷的成本(即培训、根本原因分析等)。2.评估成本。在交付之前独立评估产品和服务的成本(即检查、测试等)。3.内部故障成本。在交付之前修复有缺陷的产品和服务的成本(即返工、重新测试、报废等)。4.外部故障成本。交付后修复有缺陷产品和服务的成本(即保修、维修、召回等)。每种成本类型的相关费用在各个阶段都会以数量级增长。例如,假设每个缺陷的预防成本为 1.00 美元。那么,每个缺陷的评估成本为 10.00 美元,每个缺陷的内部故障成本为 100.00 美元,每个缺陷的外部故障成本为 1,000.00 美元。有证据表明,每个缺陷的外部故障成本可能高达 10,000 至 50,000 美元(如果想到汽车召回或飞机失事(在无谓的或集体的诉讼之后),这些成本可能高达数百万美元)。自 20 世纪 70 年代以来,人们就开始理解这些基本的经济比率,并用它来证明传统线性系统和软件工程方法的创建、推广、使用和监管的合理性。质量工程经济学家通常会估计在开发普通产品或服务过程中产生的缺陷总数(即 10,000 个缺陷)。然后,他们可以根据这四个类别之间的投资比率来估算质量成本。在组织中培养质量文化非常困难且成本高昂。也就是说,重视早期质量工程活动会降低成本,而重视后期质量工程活动会增加成本。因此,尽管人们经常寻求使用所有四种质量活动和成本的平衡投资组合,但重点还是放在最早的质量工程活动(即缺陷预防活动)上。尽管有这些模型,但大多数公司仍将其大部分活动投资于后两类(即失败成本)。这通常被称为“世界级质量”。这就像在奥运会上赢得金牌、成为冠军健美运动员或赢得世界杯一样。它需要在很长一段时间内投入大量资源,很少有人能做到这一点(即不到 5%)。传统技术需要花费数百万美元,耗时数十年,如果您孤注一掷地进行质量竞争,却输了,甚至可能导致破产。如今,一些公司专注于最后一类(即外部失败成本),经济模型表明,召回产品可能比 W. Edwards Deming 建议的“第一次就做对”更具成本效益。需要进行组织变革,以制度化早期质量工程活动或形成质量文化。组织变革非常困难,涉及改变根深蒂固的心理信念和人类行为。要取得成功,需要数十年、无数举措和数百万美元。活动、组织或对立行为越复杂,难度就越大。组织的微小变化都可能极其困难。您听说过“蝴蝶效应”吗?(即,一只蝴蝶在世界的某个地方扇动翅膀,可能会在其他地方引发飓风)?我就是那只蝴蝶,引发过许多飓风(即,最无害的词语和想法可能会引发一场大森林火灾)。传统方法的支持者喜欢指出,学术教科书方法强调使用平衡的质量工程活动组合。事实上,传统主义者倾向于将最早和成本最低的缺陷预防活动作为解决质量困境的答案。不幸的是,传统主义者未能指出实施这些做法非常困难、昂贵且耗时。几乎没有所谓的传统组织使用任何先进的质量工程活动。他们需要数十年和数千人。传统方法带有数千页的模型组合,推荐数百种活动、指标和工件。敏捷方法没有那么根深蒂固,没有数十页的手册,而且活动和工件很少。欢迎来到前线,堑壕战,为您的心、思想和灵魂而战。传统的质量工程实践不仅复杂、昂贵、耗时,而且它们需要大量人工、过时,并且来自工业时代。通常,它们没有足够强调缺陷预防,而专注于评估活动,如手动代码检查或后期大爆炸集成测试。此外,工业时代的哲学家错误地认为传统方法可以扩展到复杂的组织、产品和服务,以及需要数十年才能完成的数十亿美元的系统。传统方法对缺陷预防关注不够,过于关注评估活动,完全忽略了故障活动。此外,将工业时代的人工密集型评估活动错误地应用于庞大、复杂且风险很大的组织、产品、服务、预算和时间表,会加剧缺陷的扩散,而不是减轻缺陷。20 世纪 60 年代的大型机操作系统是人类有史以来建造的最早、最复杂的系统之一。随着人员和沟通路径的增加,生产力减慢,缺陷增加。现代排队理论和模型表明,大范围、时间表和预算会降低生产力并增加产生的缺陷数量。事实上,在大型复杂的技术密集型项目中,生产力会停止,缺陷会大量出现。