我们描述了用于存储和冷却原子氢 (H) 的大型磁阱的设计和性能。该阱在 1.5 K 温度下的稀释制冷机的真空空间中运行。为了获得较大的阱体积,我们实施了八极子配置的线性电流 (Ioffe 条) 用于径向约束,并结合两个轴向箍缩线圈和一个 3 T 螺线管用于低温 H 解离器。八极子磁体由八个轨道段组成,它们通过磁力相互压缩。这提供了一个机械稳定且坚固的结构,每个段都可以更换或修理。最大阱深度达到了 0.54 K (0.8 T),相当于 50 mK 下氢气的有效体积为 0.5 升。这比以往用于捕获原子的体积要大一个数量级。
摘要 - 在CERN的抗蛋白质降压器(AD)上运行的电子冷却器处于其生命周期的结束。电子冷却器运行了40多年,已用于减速其能量约为5.3 meV的抗蛋白束。正在设计一个新的电子冷却器,并有望在2026年的长时间关闭3(LS3)期间进行调试。初始磁铁系统设计由一系列煎饼螺线管线圈以及膨胀电磁阀组成。煎饼线圈的机械比对必须遵守具有挑战性的要求,在该要求中,线圈需要具有0.1 mrad角定位精度,而B z /b r <5×10-4就质量而言。在本文中,提出了一种用于测定电磁螺旋线角度的新测量方法,从而可以更快地识别煎饼角度。该方法在现有传感器上实验验证,结果用于设计能够满足需求的新测量系统。
自由能原理 (FEP) 指出任何动力系统都可以解释为对其周围环境进行贝叶斯推理。在这项工作中,我们深入研究了在最简单的系统集——弱耦合非平衡线性随机系统中推导 FEP 所需的假设。具体来说,我们探索 (i) 对系统统计结构的要求有多普遍,以及 (ii) FEP 对此类系统行为的信息量有多大。我们发现 FEP 的两个要求——马尔可夫毯子条件(即排除内部和外部状态之间直接耦合的统计边界)和对其螺线管流的严格限制(即驱动系统失衡的趋势)——仅对非常狭窄的参数空间有效。合适的系统需要不存在感知-动作不对称,这对于与环境相互作用的生命系统来说极不寻常。更重要的是,我们观察到,论证中数学上的核心步骤,即把系统的行为与变分推理联系起来,依赖于系统平均状态的动态与这些状态的平均动态之间的隐式等价性。这种等价性即使对于线性系统也不成立,因为它需要有效地与系统的相互作用历史脱钩。这些目标
LhARA 将集成尖端技术,包括:• 激光驱动质子和离子源:该组件产生短而强的脉冲,用于“FLASH”辐射和紧密聚焦的微型光束。与传统方法不同,LhARA 无需准直即可实现这一目标。• 电子等离子体(Gabor)透镜:激光驱动离子源产生高度发散的光束,具有很大的能量散度,每个脉冲的能量散度可变化高达 25%。Gabor 透镜是传统螺线管的经济高效的替代品,并具有强大的聚焦能力。• 使用固定场交变(FFA)梯度加速器进行后加速:将使用固定场交变梯度加速器进行快速加速,从而可以灵活调整离子束的时间、能量和空间结构。与英国主要离子源激光器和加速器研究所团体的合作确保了强劲的发展。• 患者定位的智能自动化。• 包括离子声成像在内的新型仪器和诊断技术。
扭转菌株下的抽象DNA经历了屈曲过渡,这是Plectoneme成核和超级旋转动力学的基本步骤,这对于处理基因组信息至关重要。尽管其重要性,但屈曲过渡的定量模型,尤其是解释了当前缺少单分子镊子揭示的RNA屈曲时间和DNA屈曲时间之间令人惊讶的两级差异。此外,关于屈曲过渡过程中DNA的配置知之甚少,因为它们不是直接观察到的实验。在这里,我们使用离散的蠕虫样链模型和布朗动力学来模拟DNA/RNA屈曲过渡。我们的模拟与屈曲过渡的实验确定的参数非常吻合。模拟表明,屈曲时间在很大和指数上取决于弯曲刚度,这是DNA和RNA之间测得的差异的一半以上。分析我们的模拟揭示的链的显微镜构象,我们发现了螺线管形过渡状态和卷曲中间体的明确证据。卷曲中间的具有单个环,并且在低力下越来越占人群。综上所述,模拟表明,类似蠕虫的链模型可以半定量地进行DNA和RNA的屈曲动力学。
教学大纲 模块 1 铅酸电池、镍镉电池、锂离子电池、磷酸锂电池、钛酸锂电池、镍金属、钠硫电池和铝空气电池的原理和构造。电池特性、电池额定值、容量和效率、电池的各种测试、电池充电技术。电池维护。模块 2 充电系统 充电系统组件、发电机和交流发电机、类型、构造和特性、电压和电流调节、切断继电器和调节器、直流充电电路。发电机起动系统 起动电机的要求、起动电机的类型、构造和特性、起动驱动机构、起动开关和螺线管。模块 3 点火系统 常规类型 - 电池线圈和磁电机点火系统电路细节和组件、火花塞 - 结构细节和类型、离心和真空提前机构、非接触式点火触发装置、电容放电点火、无分电器点火系统。照明系统 头灯和指示灯结构和工作细节、头灯聚焦、防眩目装置、汽车线路电路(喇叭电路、指示灯电路、电子燃油表、油压表、冷却液温度指示器)。模块 4 传感器和执行器:速度传感器、压力传感器:歧管绝对压力传感器、爆震传感器、温度传感器:冷却液和废气温度、废气含氧量传感器。
欧洲核子研究中心大型强子对撞机 (LHC) 上的紧凑型μ子螺线管 (CMS) 探测器正在进行大规模升级,以应对高亮度 LHC (HL-LHC) 的严苛条件。CMS 中的新型定时探测器将测量最小电离粒子 (MIP),时间分辨率为每次命中 ∼ 40-50 ps,覆盖率高达 | η | =3。来自此 MIP 定时探测器 (MTD) 的精确时间信息将降低 HL-LHC 预计的高水平堆积的影响,并为 CMS 探测器带来新的独特功能。MTD 的端盖区域称为端盖定时层 (ETL),必须承受高通量,这促使人们使用具有快速电荷收集功能的薄型耐辐射硅传感器。因此,ETL 将配备硅低增益雪崩二极管 (LGAD),覆盖高辐射伪快速度区域 1.6 < | η | < 3.0。LGAD 将使用 ETROC 读出芯片读出,该芯片专为精确计时测量而设计。我们将介绍 ETL 探测器的广泛发展和进展,从传感器到读出电子设备、机械设计和系统测试计划。此外,我们将展示测试光束结果,这些结果证明了所需的时间分辨率。
在过渡金属氧化金属异质结构的界面处的相关性和电子重建的摘要为调整其独特的物理特性提供了新的途径。在这里,我们研究了界面非色化和垂直相分离对磁性特性的影响,以及外部上马la 0.7 SR 0.7 SR 0.3 MNO 3(LSMO)/SRTIO 3(001)氧化物氧化物异构结构的接近性诱导的磁性。我们还重新分辨了该系统报告的最近观察到的逆滞后行为,我们发现,这些行为是从超导螺线管的remanent fird中提出的,而不是从低稳态的LSMO lsmo thin-films中的抗铁磁内交换偶联。结合了原子解析的电子能损失光谱,元素特异性X射线磁性圆形二色性和界面敏感的极化X射线谐振磁磁反射性显示Mn 3 + - 增强的互化lsmo层的形成。 MNO 3,以及界面处的少量O-VACACANCES。这些结果不仅可以提高对相关氧化物界面的磁性和自旋结构的理解,而且还对实际应用有望,尤其是在性能依赖于界面自旋结构控制和旋转极化电流的设备。
物理学-DSC 2A:电和磁(学分:理论-04、实践-02)理论:60 讲座矢量分析:矢量代数(标量和矢量积)回顾、梯度、散度、旋度及其意义、矢量积分、矢量场的线、表面和体积积分、高斯散度定理和斯托克斯矢量定理(仅陈述)。(12 讲座)静电学:静电场、电通量、高斯静电定理。高斯定理的应用-点电荷、无限长电荷线、均匀带电球壳和实心球、平面带电片、带电导体引起的电场。电势作为电场的线积分,由点电荷引起的电势,电偶极子,均匀带电球壳和实心球。根据电位计算电场。孤立球形导体的电容。平行板、球形和圆柱形电容器。静电场中单位体积的能量。介电介质、极化、位移矢量。电介质中的高斯定理。完全充满电介质的平行板电容器。(22 讲)磁性:静磁学:毕奥-萨伐尔定律及其应用-直导体、圆形线圈、载流螺线管。磁场的发散和旋度。磁矢势。安培环路定律。材料的磁性:磁强度、磁感应、磁导率、磁化率。简介
TS 模式也可以不采用蛇形线来表示对应于整数自旋共振 γG = k 的离散能量值。这里 γ 是相对论因子,G 是旋磁比的异常部分。对于质子,这样的能量值数量为 25,能量步长为 0.523 GeV。对于氘核,只有一个点,总能量为 13.1 GeV。在理想的对撞机晶格中,自旋运动会退化:任何轨道位置的任何自旋方向都会在每次粒子转动时重复。这意味着 TS 模式下的自旋调谐为零,粒子处于 TS 共振状态。在这种情况下,自旋运动对磁场的微小扰动高度敏感,这些扰动与晶格缺陷以及回旋加速器和同步加速器粒子的振荡有关。在实际情况下,自旋简并被消除,因为极化沿着由对撞机晶格缺陷决定的未知方向变得稳定。极化控制由自旋导航器提供,自旋导航器是基于弱螺线管的设备,可在 SPD 相互作用点设置所需的极化方向。导航器对自旋的影响应大大超过小扰动场的影响 [4]。TS 模式下的极化控制方案如图 3 所示。两个对称放置在 SPD 周围的自旋导航器用于稳定 SPD 垂直平面上所需的极化方向(Ψ 是极化和粒子速度矢量之间的角度)[3]。