右边的第一项肯定等于零,因为它是矢量与自身的叉积,但第二项对于一般运动不为零。然而,̈𝒓 只是行星的加速度,根据牛顿第二定律,它的方向与施加的(重力)力的方向一致,因此方向也沿着 𝒓 。因此,在这种情况下第二项也必须为零。因此,我们可以说 ̈𝑨= 0,所以 ̇𝑨 是一个常数。很明显,对于任何“向心力”,这都是正确的,力的方向沿着连接质心的线。
由于美国导弹防御局和其他国防组织投入了数十亿美元,过去二十年来,相关技术不断发展 - 基础技术现已成熟且模块化:推进器、电子设备、传感器、制导、控制、导航 (GN&C) 和跟踪软件 - 这些技术可以随时调整和配置,用于航天器维修、行星、月球、小行星的会合和着陆任务...
盖亚任务通过提供极其精确的全球参考天体测量技术,彻底改变了天体物理学。超越盖亚实现窄场微角秒 (uas) 天体测量技术,通过测量主星的反射运动,可以探测到类似地球的系外行星 (Unwin 等人,2008)。尽管径向速度 (RV) 和凌日等流行方法已经成功发现了数千颗系外行星,但只有天体测量探测方法才能让我们完全确定轨道并测量系外行星的质量 1 。系外行星的质量是确定该行星是否适合生命存在的关键参数,因为其大气和地球物理过程在很大程度上取决于质量。与 RV 方法相比,天体测量探测受恒星活动扰动的影响较小,对长周期系外行星具有更好的灵敏度,因此可以与 RV 和凌日方法相辅相成。针对这一独特的作用,NASA将“恒星反射运动灵敏度-天文测量”列为测量可居住系外行星目标质量的一级技术差距(NASA战略技术差距)。
天体物理学的一大新领域是系外行星的研究。截至 2020 年 4 月底,已知有 4000 多个这样的天体。其中 2000 多个是由开普勒任务发现的,另有 2000 个候选天体尚待确认。开普勒任务对于了解我们在宇宙中的位置至关重要,如果没有威廉·博鲁茨基的聪明才智和奉献精神,开普勒任务就不会实现。在职业生涯早期,威廉就因建造光谱仪器来确定超高速冲击波的等离子体特性而出名。他开发了地球平流层和中间层的光化学模型,以研究一氧化氮和氟碳排放对臭氧的影响。他还研究了闪电的光学效率,并结合航天器观测结果,利用这些测量结果推断出行星大气中前生物分子的产生率。但探测恒星 80 ppm 的暗化是一项艰巨的任务,威廉和他的团队花了数年时间才让科学界相信这是一种寻找系外行星的可行方法。由此产生的开普勒任务的巨大成功充分证明了他的努力是值得的。
这里展示的是三种岩石行星的版本,它们内部放射性元素产生的热量不同。中间的行星与地球类似,具有板块构造和内部发电机产生磁场。顶部的行星具有更多的放射性热量,有极端的火山活动,但没有发电机或磁场。底部的行星放射性热量较少,在地质上是“死”的,没有火山活动。(插图由梅丽莎·韦斯绘制)。
在地球物理专业中,我们使用观察性,正向和反向建模方法研究地球和其他行星的动力学和结构。 主题包括环境研究,海洋过程,水文学,冰川学,火山,地震,构造,影响,资源,浅层危害以及行星地幔的对流。 从全球研究到微观量表,以及从几秒钟到数十亿年的时间尺度上发生的过程,地球物理学家对地球的物理过程和特性提供了基本见解。 拥有地球物理学位,学生能够在各种学科中解决尖端问题,从基本的地球和气候科学研究到能源领域的应用,数据科学和技术以及国家安全。在地球物理专业中,我们使用观察性,正向和反向建模方法研究地球和其他行星的动力学和结构。主题包括环境研究,海洋过程,水文学,冰川学,火山,地震,构造,影响,资源,浅层危害以及行星地幔的对流。从全球研究到微观量表,以及从几秒钟到数十亿年的时间尺度上发生的过程,地球物理学家对地球的物理过程和特性提供了基本见解。拥有地球物理学位,学生能够在各种学科中解决尖端问题,从基本的地球和气候科学研究到能源领域的应用,数据科学和技术以及国家安全。
澳门特区政府高度重视提升太空科学研发能力,积极参与国家航天事业发展。在国家和特区政府的大力支持下,澳门自2004年启动首个国家月球探测工程以来,一直参与相关月球探测任务载荷研制。2018年,国家科技部批准在澳门设立月球与行星科学国家重点实验室,参与国家嫦娥系列和天问系列深空探测任务,致力于研究太阳系及其行星的起源和演化
目标:配备高分辨率红外天文学仪器,可以观测第一颗恒星、第一批星系的形成,以及潜在宜居系外行星的详细大气特征。状态:正在进行中,于 2021 年 12 月发射,并于 2022 年 7 月投入使用。目前在围绕太阳-地球 L2 点的轨道上运行。ETH 贡献:MIRI(中红外范围测量仪器)由粒子物理和天体物理研究所作为一个联盟的一部分开发。