声辐射力 (ARF) 是由声波产生的稳定力,是实现微物体操作的一种便捷方式,例如微样本分离 [1-3] 和富集 [4]、细胞分选 [5,6] 和单细胞操作 [7]。与使用时间周期声场相比,使用脉冲和波列等瞬态激励可以实现更精确的操作 [1-7]。首先,脉冲声操作受瑞利声流的干扰较小 [8,9],因为辐射力比声流建立得快得多 [10,11]。其次,使用声波包可以定位声干涉图样,从而控制声捕获区域的空间范围 [12]。事实上,驻波比行波施加了大得多的辐射力(在小颗粒极限内),激光制导声镊(LGAT)[13] 利用这种干涉原理,创造了一种混合辐射力景观,该景观将高振幅压电声场(强,Z 场)和光图案光生声场(弱,L 场)耦合在一起。混合场保留了 L 场的空间信息和 Z 场的强度。
AFRL 空军研究实验室 AMM 制造模型 B 叶片 BTT 叶尖正时 CAD 计算机辅助设计 CARL 压缩机航空研究实验室 CFD 计算流体动力学 CMM 坐标测量机 CMS 部件模态综合 DOD 家用物体损坏 DOF 自由度 EO 发动机阶数 FEA 有限元分析 FEM 有限元模型 FMM 基本失谐模型 FOD 外来物体损坏 FRA 受迫响应分析 GMM 几何失谐模型 HCF 高周疲劳 HPC 高压压缩机 IBR 整体叶片转子 ICP 迭代最近点 LCF 低周疲劳 MMDA 改进模态域方法 MORPH 智能网格变形方法 PCA 主成分分析 PBS 参数化叶片研究 N 叶片数量 ND 节点直径 NSMS 非侵入应力测量系统 ROM 降阶模型 SDOF 单自由度 SWAT 正弦波分析技术 SNM 标称子集模式 TAF 调谐吸收器因子 TEFF 涡轮发动机疲劳设施 TWE 行波激励
本课程的目的是在理论上广泛使用的一些数学技术,以尽可能地整合某种形式的理解和欣赏。课程目录审查线性向量空间:(定义;线性独立性和基础向量;功能空间;正交性和完整性关系)。特征向量和特征值:(线性操作员的审查;伴随和Hermitian操作员;特征向量和特征值。重量功能。Sturm-Liouville理论; Hermitian Sturm-Liouville运营商。球形谐波和Legendre方程。量子振荡器和Hermite方程。正交多项式)。格林的功能:(定义。示例:静电。Green功能的构造:特征态方法;连续性方法。量子散射在时间无关的方法中;扰动理论。旅行波。示例:电磁学。傅立叶变换方法;阻碍了格林的功能和智障潜力)。积分方程:(分类:第一和第二种的积分方程;弗雷德姆和伏特拉方程。简单案例:退化内核;方程式通过傅立叶变换溶解;可简化微分方程的问题。Neumann系列解决方案(扰动理论);弗雷霍尔姆系列(如果时间)。特征值问题;希尔伯特·史克米特理论)。变化的计算
本文介绍了用于空间数据链路应用的 GaAs 行波电光调制器阵列的设计注意事项。调制器设计的核心是低损耗折叠光学配置,可在设备的一端提供直接的直线射频 (RF) 接入,而所有光纤端口均位于另一端。此配置是多通道应用所需的密集单片调制器阵列的关键推动因素。它还可以实现更紧凑的封装、改进的光纤处理,并通过消除 RF 馈电装置中的方向变化来实现高调制带宽和低纹波。单个 Mach-Zehnder (MZ) 和单片双并行 (IQ) 调制器都已评估高达 70 GHz,带宽约为 50 GHz,低频开/关电压摆幅 (V π ) 为 4.6 V(电压长度乘积为 8.3 Vcm)。折叠式设备比传统的“直线式”调制器要紧凑得多,而适度的设备阵列(例如 × 4)可以容纳在与单个调制器尺寸相似的封装中。讨论了独立寻址 MZ 调制器单片阵列(每个都有自己的输入光纤)的设计考虑因素,并提出了实用配置。
摘要:不朽的时间偏见(ITB)在队列研究中很常见,并扭曲了治疗和未经处理之间的关联。我们使用了一项意大利关于COVID-19疫苗效果的研究数据,其中具有大量的同类,长时间的随访和对混杂因素的调整,这是ITB的影响,目的是通过比较疫苗接种运动的实际影响,通过比较疫苗接种人群之间的实际影响,从而验证疫苗的死亡人数之间的所有因素风险和未经viccccicccciccccicated的人群之间的风险。我们在单个索引日期对所有受试者保持一致,并考虑了“全因死亡”结果,以比较未接种式群体的表达分布与各种疫苗接种状态。单变量分析中的全因死亡危害比率分别为1、2和3/4剂量与未接种疫苗的人分别为0.88、1.23和1.21。多元值为2.40、1.98和0.99。随着疫苗接种的增加可能是对危险比的这种趋势的可能解释,可能是收获的影响;日历时间偏见,占季节性和大流行波;案例计数窗口偏差;健康疫苗的偏见;或这些因素的某种组合。具有2剂,即使有3/4剂量,被计算出的限制的平均生存时间和限制的平均损失的损失的平均限制时间也显示出疫苗接种人群的小但显着的下降。
摘要 本研究论文介绍了一种用于“超大规模集成”(VLSI)应用的新型 22 晶体管 (22T)、1 位“全加器”(FA)。所提出的 FA 源自混合逻辑,该逻辑是“栅极扩散输入”(GDI)技术、“传输门”(TG)和“静态 CMOS”(SCMOS)逻辑的组合。为了评估所提出的 FA 的性能,在“设计指标”(DM)方面将其与最先进的 FA 进行了比较,例如功率、延迟、“功率延迟乘积”(PDP)和“晶体管数量”(TC)。为了进行公平比较,所有考虑的 FA 都是在常见的“工艺电压温度”(PVT)条件下设计和模拟的。模拟是使用 Cadences 的 Spectre 模拟器使用 45 nm“预测技术模型”(PTM)进行的。仿真表明,在输入信号频率 fin=200 MHz 和电源电压 V dd =1 V 时,所提出的 FA 的“平均功率耗散”(APD) 为 1.21 µW。它的“最坏情况延迟”(WCD) 为 135 ps,并且“功率延迟积”(PDP) =0.163 fJ。进一步为了评估所提出的 FA 在 V dd 和输入信号操作数大小方面的可扩展性,它嵌入在 64 位 (64b)“行波进位加法器”(RCA) 链中,并通过将 V dd 从 1.2 V 以 0.2 V 的步长降低到 0.4 V 来进行仿真。仿真结果表明,只有所提出的 FA 和其他 2 个报道的 FA 能够在不同的 V dd 值下在 64b RCA 中运行,而无需使用任何中间缓冲器。此外,我们观察到,与其他 2 个 FA 相比,所提出的 FA 具有更好的功率、延迟和 TC。关键词:全加器、PDP、低功耗、静态 CMOS、门扩散输入、传输门逻辑
在集总元件 (LE) 配置中驱动电光调制器可实现较小的占用空间、降低功耗并提高高速性能。传统直线 LE 调制器的主要缺点是需要较高的驱动电压,这是由于其移相器较短所致。为了解决这个问题,我们引入了一种具有蛇形移相器的 Mach-Zehnder 调制器 (M-MZM),它可以在 LE 配置中驱动,同时保持光学移相器长度与行波调制器 (TW-MZM) 相同的数量级。需要考虑的设计限制是设备的光学传输时间,它限制了整体电光带宽。首先,我们回顾了与 TW-MZM 相比 LE 调制器的整体功耗改进以及带宽增强,同时还考虑了驱动器输出阻抗和线或凸块键合的寄生效应。然后,我们报告了使用标准 CMOS 兼容工艺在绝缘体上硅 (SOI) 晶片上制造的基于载流子耗尽的 M-MZM 的设计、实现和实验特性。制造的 M-MZM 具有低掺杂 (W1)、中掺杂 (W2) 和高掺杂 (W3) 结,需要 9.2 V pp、5.5 V pp 和 3.7 V pp 才能完全消光,光插入损耗分别为 5 dB、6.3 dB 和 9.1 dB。对于所有三个 M-MZM,使用 50 Ω 驱动器和终端电阻以 25 Gb/s 记录睁眼图。对于无终端电阻的 M-MZM,可以实现更高的数据速率,前提是将低输出阻抗驱动器通过引线或凸块键合到调制器上。最后,我们将 M-MZM 与 TW-MZM 的功耗进行比较,结果显示 M-MZM 在 25 Gb/s 时功耗降低了 4 倍。
摘要:本文旨在提出一种使用机器学习算法解决海运运输问题的方法。海运的一个重要方面是货物的组织。特别是,海上货运网络是一个庞大而复杂的系统,其路线图的复杂性和船舶交通的多样性使其难以建模。在研究海运系统的特征时,通常建议使用粗略模型,其中仅引入显着的近似值并且不考虑许多细节。同时,在对网络中孤立区域进行详细研究时使用精确模型,其中详细探索的是区域而不是所述区域之间的连接。在这样做时,应该注意不要忽视第一种情况下模型与实际网络的偏差,以及第二种情况下区域之间的连接。建立一个准确考虑和描述所有细节的模型会导致设计过程过于复杂,因此在实践中,根据具体任务,模拟中总是使用一些假设,这些假设基本上是与船舶运动相关的实际特性的近似值。为了建立最佳货物运输系统,使用了四种模型:跨国货物模型;具有专用货物起始港的货物运输模型;具有专用起始港和最终货物分配港的货物运输模型;循环港口链上的货物运输模型。路线条件由行波方程给出,并在此计算的基础上提出货船移动的最佳路线,其中影响货运量的条件包括:港口数量、燃料数量、货物目的港,以及港口与中途停靠港之间的距离。其科学贡献在于将人的角色简化为系统观察者,从而简化了货运计算,并有助于降低燃料和人力资源成本。
原子和离子的捕获和冷却方法对原子钟产生了革命性的影响,因为它们可以减少甚至消除主要的系统频率偏移 [1]、[2]、[3]。捕获原子/离子光学钟的性能比其前代产品提高了几个数量级,并已成为国家计量实验室研究项目的关键组成部分 [4]、[5]。基于捕获离子的连续运行原子钟已经存在了几十年,但迄今为止仅限于地面应用 [6]。本文介绍了 NASA 的深空原子钟 (DSAC),它于 2019 年发射,成为第一台在太空中运行的捕获离子原子钟 [7]。DSAC 的设计不包括低温技术、灵敏的微波腔或激光器。相反,它在接近室温的温度下运行,使用简单的行波微波元件,并使用等离子体放电深紫外光源。这些元件都具有很高的成熟度和强大的可操作性,使其能够发射到太空并在太空中运行。在地面上,DSAC 展示了 1.5x10 -13 /t 1/2 的短期分数频率稳定度 [8]。在太空中,它运行了 2 年,实现了每秒 1.5x10 -13 的分数频率稳定度,超过一天的平均时间的长期稳定性为 3x10 -15,23 天内的时间偏差仅为 4 纳秒(未消除漂移),估计漂移为每天 3.0(0.7)x10 -16。在目前使用的最稳定的空间时钟中,每个时钟都建立了至少一个数量级的新空间时钟性能标准 [9],[10],[11]。由于对辐射、温度和磁场变化的敏感度低,DSAC 时钟也适用于太空环境。预计这种级别的空间时钟性能将实现单向导航,即在现场测量信号延迟时间,从而实现近实时深空探测器导航 [12 ] 。在本文中,我们将描述 DSAC 在太空中的性能及其环境敏感性、该技术的主要应用以及未来发展方向。
探讨心脏疾病(CRD;心力衰竭和/或慢性肾脏疾病)的抽象目标影响了与以前的流感疫情相比,在瑞典大流行期间,男性和女性在Covid-19中住院的男女死亡率。设计基于注册表的回顾性,病例对照研究。在瑞典设置医院护理。参与者的所有患者在瑞典的所有患者中,患有Covid-19的主要医院诊断(2020年1月至2021年9月)或流感(2015年1月至2019年1月至2019年12月),并在注册表中鉴定出了先前的CRD,并与无CRD但无CRD但与COVID-19或INFARENZA的参考组进行了比较。使用调整后的COX比例危害模型分析了第一年全因死亡的主要风险。导致COVID-19患者有或没有CRD史的患者(n = 44 866),平均年龄为79.8岁(SD 11.8),女性为43%。在流感患者中(n = 8897),平均年龄为80.6岁(SD 11.5),女性为45%。covid-19与流感的在前两次Covid-19波(HR 1.53; 95%CI 1.45至1.62,p <0.001和p <0.001和HR 1.52; 95%CI 1.44至1.44至1.61,p <0.001),但在第三次波(第三次p <0.001),p <0.001; 95%ci 1.44至1.01 ci 1.07; 95%; 95%; 95%; 95%; 95%; 95%; 95%; 95; CRD是男性和女性共同死亡后全因死亡的独立危险因素(男性:1.37; 95%CI 1.31至1.44,p <0.001;女性:1.46; 95%CI 1.38至1.54,p <0.001)。 年龄在70岁时,患有CRD的女性的死亡率与CRD的男性相似,而在≥70岁的男性中,男性的死亡率更高。 如果存在CRD,则 COVID-19之后的结论结果更糟。在前两次Covid-19波(HR 1.53; 95%CI 1.45至1.62,p <0.001和p <0.001和HR 1.52; 95%CI 1.44至1.44至1.61,p <0.001),但在第三次波(第三次p <0.001),p <0.001; 95%ci 1.44至1.01 ci 1.07; 95%; 95%; 95%; 95%; 95%; 95%; 95%; 95;CRD是男性和女性共同死亡后全因死亡的独立危险因素(男性:1.37; 95%CI 1.31至1.44,p <0.001;女性:1.46; 95%CI 1.38至1.54,p <0.001)。年龄在70岁时,患有CRD的女性的死亡率与CRD的男性相似,而在≥70岁的男性中,男性的死亡率更高。COVID-19之后的结论结果更糟。年龄<70岁的女性中,CRD的存在减弱了女性的保护作用。covid-19与前两次大流行波中的流感相比,与流感更高的死亡风险有关。