TWT 极大地改变了雷达系统、电子战、通信系统和空间应用的防御能力。由于其高功率放大能力和耐用性,它们在国防系统中发挥着关键作用。它们的效率和可靠性使其成为远程通信、雷达系统和电子战应用的必备技术。凭借其久经考验的记录,TWT 在增强现代国防技术能力方面仍然不可或缺。
驱动)会产生不良后果,最明显的是输出失真。本论文研究了多音驱动下的行波管 (TWT) 建模。多音驱动意味着馈送到放大器的输入信号或驱动信号的频谱具有几个不同的音调或载波,每个音调或载波都用于传输与其他载波上的信息无关的信息。即使对于中等水平的驱动信号,放大器输出上的频谱也包含输入中没有的频率内容,即输出不仅仅是输入的缩放版本。输入信号的这种失真使得随后对载波上的信息进行解码变得困难。我们研究 TWT 的物理、建模和分析,旨在提高设备性能。1.1.1 行波管 行波管是一种用于放大相干电磁波的设备,通常在微波(1-100 GHz)范围内。放大波所需的自由能来自存储在靠近电磁 (EM) 波的电子束中的直流能量。如果电子束和 EM 波的速度几乎相同,则光束中的能量会传递给波,表现为波幅增长;这种增长是由于光束-波系统固有的不稳定性造成的。在定性描述相互作用之前,我们需要简要解释一下相互作用所需的慢波引导结构。
驱动)会产生不良后果,最明显的是输出失真。本论文研究了多音驱动下的行波管 (TWT) 建模。多音驱动意味着馈送到放大器的输入信号或驱动信号的频谱具有几个不同的音调或载波,每个音调或载波都用于传输与其他载波上的信息无关的信息。即使对于中等水平的驱动信号,放大器输出上的频谱也包含输入中没有的频率内容,即输出不仅仅是输入的缩放版本。输入信号的这种失真使得随后对载波上的信息进行解码变得困难。我们研究 TWT 的物理、建模和分析,旨在提高设备性能。1.1.1 行波管 行波管是一种用于放大相干电磁波的装置,通常在微波(1-100 GHz)范围内。放大波所需的自由能来自存储在靠近电磁 (EM) 波的电子束中的直流能量。如果电子束和 EM 波的速度几乎相同,则光束中的能量会传递给波,表现为波幅增长;这种增长是由于光束-波系统固有的不稳定性造成的。在定性描述相互作用之前,我们需要简要解释一下相互作用所需的慢波引导结构。
EPC(电子电源调节器)、用于 SSPA(固态功率放大器)的低压 DC-DC 转换器 机载军用卫星对产品开发和制造提出了终极挑战 作者:Tiva Bussarakons 当今军事空间应用的 EPC 需要设计解决方案和制造流程,以提供最可靠的产品和最高的信心。该解决方案必须包括防辐射组件、经过验证的设计传统和设计创新。混合组装技术的使用对于减小尺寸、重量和成本至关重要。预计设计分析和计算机模拟将与实际性能相匹配。设计验证、验收测试和制造流程的书面程序是程序标准。所有制造流程在实施前都必须记录并合格。简介:在卫星通信中,转发器是通信系统的核心。它们接收、处理、放大并将接收到的信号传输回地球或另一颗卫星。参考图 1。高功率放大器单元中的 SSPA(固态功率放大器)和 TWTA(行波管放大器)执行重要的放大功能。为应用选择 SSPA 或 TWTA 取决于多种因素。主要因素是下行链路载波频率和发射机功率要求。对于功率更高、频率更高的应用,通常选择 TWTA 而不是 SSPA。TWTA 的功率最高可达 200W,效率可高达 60-65%。SSPA 适用于较低频段和较低发射机功率的应用。最新的 SSPA 的功率最高可达 90 瓦。虽然 SSPA 的效率低于 TWTA,约为 25-30%,但它比同类 TWTA 具有尺寸和质量优势。图 1. 非常简化的 RF 转发器
RM Microwave 是 RF/微波行业的马拉松选手之一。51 年前,三个厌倦了在大型公司工作的人成立了技术研究与制造公司,并开始制造有线电视组件。多年来,公司更名为 TRM Microwave,并将日益增长的能力集中在国防市场上。其约 90% 的业务用于国防,其余用于太空任务。TRM 的产品包括无源 RF/微波组件、集成组件和子系统。大量的 RF/微波电路功能(波束形成器、功率分配器、耦合器和混合器)可作为独立产品提供;但更多时候,它们是集成组件的构建块。这些广泛的组件设计让客户相信 TRM 拥有执行具有挑战性的程序的知识和生产能力。随着系统设计人员转向更换行波管放大器,TRM 发现开发用于 GaN 功率放大器的组合器的需求日益增长。除了低损耗,高功率合成器还必须消散设备反射功率产生的热量。该公司的工程师正在开发创新方法来应对这一热管理挑战,这为定向能和导弹计划打开了大门。为了支持其增长,TRM 于今年早些时候扩建了其工厂,将其位于新罕布什尔州贝德福德的工厂面积扩大了一倍,达到约 25,000 平方英尺。该公司在现有建筑上增加了一个两层楼的扩建部分,然后对原有建筑进行了改造,使两层建筑看起来相同。扩建创造了两个制造楼层,一个用于标准生产,另一个用于新产品开发。增加的空间使标准生产流程与价值流保持一致,包括
毫米波和太赫兹频率的真空电子器件在现代高数据速率和宽带通信系统、高分辨率检测和成像、医学诊断、磁约束核聚变等领域发挥着重要作用。由于电子在真空介质中运动速度快,与现有的其他辐射源(如固态器件)相比,它们具有高功率、高效率以及紧凑性的优势。我们设立“高频真空电子器件”专刊的目的是加强有关这些器件的理论、设计、仿真、工艺和开发的研究信息的交流,促进它们的应用,并吸引年轻的研究人员和工程师进入这个重要领域,这是现代电子科学和信息技术的重要组成部分。真空电子射频功率器件有很多种,包括线束器件、交叉场器件和快波器件。在高达太赫兹的高频范围内,速调管、行波管、波谷振荡管和回旋管因其高功率或宽瞬时或调谐带宽而受到广泛研究。为了在毫米波和太赫兹频率下获得高质量的性能,过去十年中出现了新的技术和工艺,包括使用 MEMS 和 3D 打印的微加工、用于窗口和衰减器的新型金刚石相关材料。同时,人们还研究了新的慢波结构和谐振结构,如超结构、高阶模式操作和片状电子束,用于获得高功率;杂散抑制;并降低制造难度,特别是在高频范围内。阴极、电子枪、I/O 结构、磁聚焦系统和收集器等器件零部件的革命性技术在高频真空电子器件的发展中发挥了关键作用。本期特刊包含 15 篇论文,涵盖了广泛的主题,涉及频率范围高达 340 GHz 的高频真空设备的设计、仿真、制造和测试,以及包括回旋管、TWT 和 EIK 在内的设备,以及波束形成和限制阴极、慢波结构和模式转换器等。高频回旋管是动态核极化核磁共振 (DNP-NMR) 应用的核心设备,可显着提高医疗系统和科学研究中高场 NMR 的灵敏度和分辨率。北京大学论文[1]《330 GHz/500 MHz DNP-NMR应用的线性偏振高纯度高斯光束整形与耦合》提出了用于330 GHz/500 MHz DNP-NMR系统的波纹TE11-HE11模式转换器和三端口定向耦合器的设计与计算。模式转换器的输出模式呈现出高度