必须按照以下技术配置中给出的顺序列出技术要求。第二列应以“是”或“否”的回答描述您的合规性。如果“否”,第三列应提供偏差程度(请提供定量回答)。第四列应说明偏差的原因(如果有)。第四列可用于将您的工具与竞争对手的工具进行比较,或提供以下技术要求表中要求的详细信息。3. 作为一种选择,请提供可能的任何建议附件/附加组件的分项成本
携带轨道角动量(OAM)的电子涡流束(EVB)在一系列基本的科学研究中起着关键作用,例如手性能量损坏光谱和磁性二色症光谱。到目前为止,几乎所有实验创建的EVB都表现出各向同性甜甜度强度模式。在这里,基于电子束的位置差异角与沿方位角方向的相位梯度之间的相关性,我们表明可以将自由电子量身定制为具有独立于携带OAM的可自定义强度模式的EVB。作为概念验证,通过使用计算机生成的全息图和设计相掩膜来塑造传输电源显微镜中无入射电子的塑造,将三个结构化的EVB量身定制,以表现出完全不同的强度表现。此外,通过模态分解,我们定量研究了它们的OAM光谱分布,并揭示了结构化的EVB呈现了由本地各种地理学诱导的一系列不同特征态的叠加。这些结果不仅概括了EVB的概念,而且还表现出除OAM外,电子束操纵的高度可控程度。
首先引入时,单光子计数检测器在同步基因上重塑晶体学。他们的快速读数速度启用了,例如,旋转角度的无快速数据收集和切片,并增强了新实验技术(如Ptychography)的开发。在最佳条件下,单光子计数检测器提供无限的动态范围,图像噪声仅受传入光子的泊松统计限制。从单个光子中计算脉冲,从本质上讲是使探测器如此成功的原因,也会引起主要缺点,这是由于模拟前端脉冲堆积而导致的高光子弹药效率的丧失。要充分利用衍射限制的光源,下一代单光子计数器需要以与增加的伏特量相同的数量级来提高其计数率能力。此外,由于较高的频道,需要快速帧速率(几个kHz)才能应对较短的停留时间。带有多个比较器和计数器的检测器架构可以为能量分辨成像打开新的可能性,而像素间交流可以克服收费共享和降低像素角效率损失引起的问题。将单光子计数检测器耦合到高Z传感器,以进行硬X射线检测(> 20 keV)和低增益的雪崩二极管(LGADS)以进行软X射线,以利用全部辐射光谱的新光源的增加。在本文中,我们提出了提高第四代同步源的单光子计数检测器性能的可能策略,并将它们比较它们以对集成检测器充电。
低能电子衍射模式包含有关所研究表面结构的精确信息。然而,从复杂的衍射模式中检索真实的空间晶格周期性是有挑战性的,尤其是当建模的模式源自由大型单位单元组成的超级晶格,该单位细胞由多个对称性等效域组成,而与底物没有简单关系。这项工作介绍了Proleted Studio软件,该软件旨在提供低能电子衍射模式的简单,直观和精确的建模。交互式图形用户界面允许实时建模实验衍射模式,所描绘的衍射点强度的变化,不同衍射域的可视化以及对任何晶格点或衍射点的操纵。单位细胞,晶格向量,网格和比例尺的可视化以及以位图和矢量格式导出现成的模型的可能性显着简化了结果的建模过程和发布。
图。3:2d XRD数据投影到2θ -ϕ(方位角角)空间被1D方位角集成的数据叠加。使用1S集成时间获取数据。(a)和(d):静态压缩后的样品的结构和纹理,在300 K.(b)和(e)时:分别在HP加热后最高为1360 K和1360 K和1450 K时发生的结构和纹理变化。(c)和(f):动态加载后样品的结构,然后淬火至300 K;在这两种情况下,最终的铁结构都对应于ϵ相。
摘要。作为光学处理器,一种衍射深神经网络(D 2 NN)利用通过机器学习设计的工程衍射表面来执行全光信息处理,并以薄光学层以光的速度完成其任务。具有足够的自由度,D 2 NN可以使用空间相干的光执行任意复合物值线性变换。同样,D 2 NN还可以使用空间不连贯的照明执行任意线性强度转换。但是,在空间不连贯的光线下,这些转换是非负的,在视图的输入场上作用于衍射限量的光学强度模式。在这里,我们将空间不连贯的d 2 NN的使用扩展到复杂值的信息处理,用于使用空间不相互分的光执行任意复合物值线性转换。通过模拟,我们表明,随着优化的衍射特征的数量增加超出了由输入和输出空间带宽产品乘法所决定的阈值,因此在空间上不相互不相互的衍射视觉处理器可以近似于使用Incoherent Incoherent Illumentiner的所有复杂的复杂价值线性转换,并用于全部流动图像仿真。这些发现对于使用各种形式的基于表面的光学处理器的自然光的信息在自然光下的全光处理很重要。
关键词:机制,X射线散射,疲劳,应变,脱位阐明钢的氢含量机制是因为可以一次激活多种机制或甚至可能需要协同的共同存在激活的事实,这使钢的氢含量机制变得复杂。一些领先的氢化氢提议机制包括氢增强的脱粘(HEDE),氢增强的局部可塑性(帮助)机制和纳米玻璃体合并机制(NVC)。在HEDE中,一旦氢浓度达到临界浓度,氢在高三轴应力位置的积累会导致Fe-FE键的衰弱。在帮助中,引入氢气会影响Fe格子中位错的行为,通常会增强钢框架中的脱位迁移率。在NVC中,预计氢会导致空缺的稳定和促进(“纳米级空隙”)团聚。对这些机制的完全理解,它们与疲劳特性的关系以及它们相互作用的相互作用需要一次测量,能够一次探测所有三种机制。在这里,我们同时提出高能X射线衍射(HEXRD)和小角度的X射线散射(SAXS)测量,在氢气中钢裂纹的原位疲劳期间。HexrD测量值探测HEDE并通过确定应变密度的确定; SAXS测量通过测定纳米孔尺寸分布的NVC。 ,我们将在空气和氢气中生长的裂纹尖端之前提出应变,脱位密度和孔径分布。HexrD测量值探测HEDE并通过确定应变密度的确定; SAXS测量通过测定纳米孔尺寸分布的NVC。,我们将在空气和氢气中生长的裂纹尖端之前提出应变,脱位密度和孔径分布。我们将在帮助,HEDE和NVC机制的背景下讨论空气中在空气中和氢中生长的裂纹尖端之间的差异。
XRD 有着悠久而辉煌的历史,始于 1895 年,当时威廉·康拉德·伦琴发现了 X 射线,并因此于 1901 年获得了首届诺贝尔物理学奖。十年后,马克斯·冯·劳厄发现了晶体中原子的重要性,并开发了一种数学理论来模拟 X 射线的衍射,以揭示原子级晶体物质的结构。此后,许多科学家使用 X 射线衍射来研究晶体学,随后许多科学家获得了诺贝尔物理学奖、化学奖、医学奖或生理学奖——最著名的可能是 1962 年因发现 DNA 分子结构而获奖的诺贝尔奖。
在扫描氦显微镜 (SHeM) 中演示了一种以微米级空间分辨率测量氦原子衍射的方法,并将其应用于研究氟化锂 (LiF) 晶体 (100) 平面上的微米级斑点。观察到的衍射峰的位置提供了局部晶格间距的精确测量,而紧密耦合散射计算和蒙特卡罗射线追踪模拟的组合则重现了衍射强度的主要变化。随后,通过在倒易空间中的不同点进行测量,衍射结果可用于增强图像对比度。结果为使用氦微衍射表征小尺度上精细或电子敏感材料的形态开辟了可能性。这包括许多在基础和技术上重要的样品,这些样品无法在传统的原子散射仪器中进行研究,例如小晶粒尺寸的剥离二维材料、多晶样品和其他不表现出长程有序的表面。
图 1-b 显示了 n-Si 的衍射图案样品。它不同于n-Si的衍射图案具有 SiO 2 层的样品,在 X 射线衍射图上 2θ≈17.4° 处没有漫反射,结构反射 (111) α 的强度分别降低了 2.5 倍、三阶 (333) α 的强度降低了 1.7 倍,结构反射 (002) 的强度降低了,反射 (313)、(513) 和 (620) 的强度也增加了几个百分点,它们在 n-Si 衍射图谱的光谱中产生了衍射偏移样品在较小角度的一侧。晶粒尺寸和晶格参数由 n-Si 的 (111) 结构线的半宽度确定分别为 58 nm 和 а Si =0.5419 nm,略小于样品 n -Si 的晶格参数(а Si =0.5426 nm)SiO 2 层。但这会导致 n-Si 结构反射发生偏移衍射图案朝向较小的散射角。