摘要 - 深度学习的进展使得通过分析视频在智能环境中远程估算心率变得越来越可行。但是,深度学习方法的一个显着局限性是他们对广泛的标记数据集以进行有效培训的广泛依赖。为了解决这个问题,自我监督的学习已成为有前途的途径。在此基础上,我们引入了一种解决方案,该解决方案利用自我监督的对比度学习来估算远程光插曲 - 声学(PPG)和心率监测,从而降低了对标记数据的依赖性并增强性能。我们建议使用3个空间和3个时间扩增来通过对比度框架训练编码器,然后利用编码器的晚期中间嵌入来进行远程PPG和心率估计。我们在两个公开可用数据集上的实验展示了我们对几种相关作品以及监督学习基准的改进方法的改进,因为我们的结果接近了最先进的方法。我们还进行了彻底的实验,以展示使用不同设计选择的效果,例如视频表示方法,在训练阶段中使用的增强和其他选择。我们还证明了我们提出的方法对减少标记数据的监督学习方法的鲁棒性。
自动化设计综合有可能彻底改变现代工程设计流程,并提高无数行业对高度优化和定制产品的访问。成功地将生成式机器学习应用于设计工程可以实现这种自动化设计综合,是一个非常重要的研究课题。我们回顾并分析了工程设计中的深度生成机器学习模型。深度生成模型 (DGM) 通常利用深度网络从输入数据集中学习并合成新设计。最近,前馈神经网络 (NN)、生成对抗网络 (GAN)、变分自动编码器 (VAE) 和某些深度强化学习 (DRL) 框架等 DGM 在结构优化、材料设计和形状合成等设计应用中显示出良好的效果。自 2016 年以来,DGM 在工程设计中的普及率飙升。为了预测其持续增长,我们对最近的进展进行了回顾,以造福对设计 DGM 感兴趣的研究人员。我们将回顾的结构化为对当前文献中常用的算法、数据集、表示方法和应用的阐述。特别是,我们讨论了在 DGM 中引入新技术和方法、成功将 DGM 应用于设计相关领域或通过数据集或辅助方法直接支持 DGM 开发的关键工作。我们进一步
第一单元:人工智能问题:人工智能技术 – 成功标准 – 将问题定义为状态空间搜索 – 生产系统 – 特征 – 问题特征。第二单元:启发式搜索技术:生成和测试 – 爬山法 – 最佳优先搜索 – 问题简化 – 约束满足 – 手段最终分析。第三单元:知识表示问题:知识表示方法 – 框架问题 – 可计算函数和谓词 – 解析 – 程序性知识与陈述性知识。第四单元:机器人基础:机器人简介、分类、机器人历史、机器人的优缺点、机器人组件、机器人自由度、机器人关节和坐标、机器人工作空间、机器人范围、机器人语言。UNIT-V -:传感器:介绍机器人的内部和外部传感器、位置传感器、速度传感器、加速度传感器、声纳和红外传感器、触摸和触觉传感器。机器人的应用:机器人的应用、机器人的选择、机器人应用的经济因素和理由;安全要求。教科书 1.Elaine Rich 和 Kevin Knight,《人工智能》,Tata McGraw Hill,第二版。2.Craig J J,“机器人学、力学和控制导论”,Pearson Education,新德里,2004 年。参考书 1.Saeed B Niku,“机器人学导论”,Pearson Education,新德里,2003 年。2.George F Luger,“人工智能”,Pearson Edition 出版物,第 4 版
摘要 — 眼动追踪是扩展现实 (XR) 中基于凝视的交互的关键技术,但传统的基于帧的系统难以满足 XR 对高精度、低延迟和低功耗的要求。事件摄像机由于其高时间分辨率和低功耗而提供了一种有前途的替代方案。在本文中,我们提出了 FACET(快速准确的基于事件的眼动追踪),这是一种端到端神经网络,可直接从事件数据输出瞳孔椭圆参数,针对实时 XR 应用进行了优化。椭圆输出可直接用于后续基于椭圆的瞳孔追踪器。我们通过扩展带注释的数据并将原始掩模标签转换为基于椭圆的注释来训练模型,从而增强了 EV-Eye 数据集。此外,采用了一种新颖的三角损失来解决角度不连续性问题,并提出了一种快速因果事件体积事件表示方法。在增强版 EV-Eye 测试集上,FACET 实现了平均瞳孔中心误差 0.20 像素,推理时间为 0.53 毫秒,与现有技术 EV-Eye 相比,像素误差和推理时间分别减少了 1.6 倍和 1.8 倍,参数和算术运算减少了 4.4 倍和 11.7 倍。代码可在 https://github.com/DeanJY/FACET 上找到。
卷积神经网络13证明了蛋白质序列可以在DTI预测中提供有用的信息。Mahmud等人开发了iDTi-CSsmoteB网络服务器,使用XGBoost和过采样技术,基于PubChem指纹和各种蛋白质序列特征预测DTI。14然而,上述方法的数据质量并不令人满意,因为阴性数据是任意选择的。其他几项研究也这样做了。15-17其中一些使用随机非阳性DTI作为阴性样本。然而,非阳性DTI并不一定是阴性的,因为它们还没有经过验证。其中一些在验证后可能是阳性的。因此,使用高质量数据构建预测模型具有重要意义。在本研究中,我们开发了一个机器学习模型,使用化学结构和蛋白质序列作为特征来预测DTI。采用流水线技术封装特征数据标准化、SMOTE采样过程和机器学习估计器,以避免过度拟合并提高模型泛化能力。整个工作流程如图1所示。简而言之,从各种来源收集了超过40 000个具有解离常数(kd)值的DTI。用PaDEL-Descriptor和RDKit计算五种分子指纹和描述符。通过PSI-Blast和POSSUM工具包提取蛋白质序列特征。用5种机器学习方法和6种特征表示方法建立了30个DTI预测模型,其中Morgan-PSSM-SVM模型(MPSM-DTI)被验证为最佳模型。在案例研究中,MPSM-DTI模型在DTI预测中表现出了令人满意的能力。
Abstract —This paper proposes a nondominated sorting genetic algorithm II (NSGA-II) based approach to determine optimal or near-optimal sizing and siting of multi-purpose (e.g., voltage regulation and loss minimization), community-based, utility-scale shared energy storage in distribution systems with high penetra- tion of solar photovoltaic energy systems.小规模的幕后电表(BTM)电池很昂贵,尚未充分利用,其净值很难概括和控制网格服务。另一方面,公用事业规模的共享能源存储(USSES)系统有可能提供主要(例如需求侧管理,系统升级和减少需求费用)以及次要(例如频率调节,资源充足性和能源套利)网格服务。在现有的成本结构下,仅用于主要目的而部署的存储不能证明对所有者的经济利益合理。但是,主要服务的存储空间仅利用电池总寿命容量的1-50%。在拟议的方法中,对于每个候选位置和大小的候选者组,USSES系统对电网电压偏差和功率损失的贡献得到评估,并创建了多种帕托特式前线。USSES系统通过新的染色体表示方法分散。从帕累托(Pareto)最佳阵线列表中,分配系统规划人员将有机会根据所需的目标选择适当的位置。使用实用程序尺度PV和USSES系统的IEEE 123节点分布测试馈线证明了所提出的方法。索引条款 - 使用电池存储; nsga-ii;照片 - 伏;功率损失;公用事业规模的共享能量存储。
了解人脑需要结合功能交互模式,这些模式取决于各种特征,如实验设置、定向连接强度或多个个体或群体之间的变异性。除了这些外部因素外,大脑网络还具有内部属性,例如连接的时间传播或仅在信号的不同频率范围内发生的连接模式。可视化涵盖所有必要信息的检测到的网络是一个很大的问题,这主要是因为必须在自然空间环境中的同一视图中集成大量特征。为了解决这个问题,我们提出了一种新工具,可将网络转移到虚拟视觉分析实验室中按解剖学排列的起点-终点视图中。这为用户提供了评估连接模式时间演变的机会,并提供了一种通过虚拟现实 (VR) 中的导航和交互来探索相应特征的直观且激励性的方式。该方法在一项用户研究中进行了评估,其中包括具有神经科学背景的参与者以及在计算机科学领域工作的人员。作为第一个概念验证试验,我们使用了由视觉刺激引起的脑电图记录时间序列衍生的功能性大脑网络。所有参与者都给出了积极的总体反馈,特别是他们认为使用 VR 视图比比较的 2D 桌面版本更有优势。这表明我们的应用程序成功填补了高维大脑网络可视化的空白,值得进一步跟踪和增强所提出的表示方法。© 2022 Elsevier Ltd. 保留所有权利。
本文档描述了使用Illumina技术请求库排序时要遵循的过程。本指南中提供了准备工作,图书馆提交,运输要求以及任何其他信息的详细说明。要避免请求处理的任何延迟,必须仔细遵循本指南中提供的说明。请注意,库的处理延迟将根据项目的大小而有所不同。建议与客户管理办公室联系以获取有关处理时间的信息。本指南中提到的要求还适用于图书馆质量控制项目。绘制流动池上群集边界并进行基本调用的Illumina软件取决于末端的序列复杂性,尤其是在插入的任一端,尤其是第一个十二左右的碱基对。因此,必须正确识别在这些区域中表现出足够序列复杂性的任何类型的库,否则测序数据将不足以最佳。这包括但不限于:•扩增子•BD狂想曲单细胞库•减少了基因组表示方法,例如限制性与位点相关的DNA(RAD)标记库•具有较低核苷酸复杂性(如双硫酸盐)的库中的库。为了通过低复杂性库克服此问题,可以在车道的10-50%处将控制库(例如,由Illumina提供的控制PHIX174库)升入,具体取决于初始库的复杂性。将PHIX添加到车道中将导致感兴趣的库的读数较低。上述相同的核苷酸复杂性问题适用于多路复用库时的索引序列。为了获得最佳结果,在多路复用库时,每条车道应至少使用3个索引。将按原样提供测序结果。CES对与库的设计,质量或序列复杂性有关的问题负责。
本文档描述了使用Illumina技术请求库排序时要遵循的过程。本指南中提供了准备工作,图书馆提交,运输要求以及任何其他信息的详细说明。要避免请求处理的任何延迟,必须仔细遵循本指南中提供的说明。请注意,库的处理延迟将根据项目的大小而有所不同。建议与客户管理办公室联系以获取有关处理时间的信息。本指南中提到的要求还适用于图书馆质量控制项目。绘制流动池上群集边界并进行基本调用的Illumina软件取决于末端的序列复杂性,尤其是在插入的任一端,尤其是第一个十二左右的碱基对。因此,必须正确识别在这些区域中表现出足够序列复杂性的任何类型的库,否则测序数据将不足以最佳。这包括但不限于:•扩增子•BD狂想曲单细胞库•减少了基因组表示方法,例如限制性与位点相关的DNA(RAD)标记库•具有较低核苷酸复杂性(如双硫酸盐)的库中的库。为了通过低复杂性库克服此问题,可以在车道的10-50%处将控制库(例如,由Illumina提供的控制PHIX174库)升入,具体取决于初始库的复杂性。将PHIX添加到车道中将导致感兴趣的库的读数较低。上述相同的核苷酸复杂性问题适用于多路复用库时的索引序列。为了获得最佳结果,在多路复用库时,每条车道应至少使用3个索引。将按原样提供测序结果。CES对与库的设计,质量或序列复杂性有关的问题负责。
主讲教师:Chittaranjan Hota 教授 (hota@hyderabad.bits-pilani.ac.in) 范围和目标 本课程从计算机科学的角度向学生介绍人工智能的基本概念和方法。人工智能关注一系列特定的问题,并开发了一套解决这些问题的特定技术。本课程的重点是研究开发智能程序所需的知识表示方法、推理和算法。人工智能不仅致力于构建智能实体,而且还允许理解它们。本课程将使学生了解如何使用经典的符号方法对计算机进行编程,使其以通常归因于人类“智能”的方式运行。人工智能目前涵盖了各种各样的子领域,如感知、逻辑推理、证明数学定理和诊断疾病等。人工智能使计算机工程师能够借助一套工具和方法系统化和自动化智力任务。本课程研究的方法可应用于人类智力活动的任何领域。作业部分将强调使用 C/C++、Python、R 等。学生将被要求在现实世界的问题解决中使用搜索策略、游戏程序(如国际象棋或井字游戏)、规划器、仅具有推理引擎的小型专家系统外壳、使用 TMS 或贝叶斯网络等模型在不确定性下进行推理的程序、自然语言理解程序以及使用联结主义模型(如神经网络)的机器学习领域的程序。教科书 T1 Stuart Russell 和 Peter Norvig,《人工智能:一种现代方法》,Pearson 教育,第 3 版,2009 年。参考书 R1 George F. Luger 人工智能:复杂问题解决的结构和策略,第四版,Pearson,2002 年。R2 DW Patterson,《人工智能与专家系统简介》,PHI,2002 年。 R4 Elaine Rich 和 Kevin Knight,《人工智能》,Tata McGraw Hill,第二版,2002 年。