A c 横截面积,[ m 2 ] A s , A h 总传热面积,[ m 2 ] β 表面密度,[ m 2 /m 3 ] 或整体压力梯度,[ Pa/m ] C p 恒压比热,[ J/ ( kgK )] Co 库仑数 d h 水力直径,[ m ] δ 翅片厚度,[ m ] ϵ 热交换器效率或湍流耗散,[ s ] 或翅片间距比 f c 核心摩擦系数 f 扇形 扇形摩擦系数 f 频率,[ Hz ] 或 Forschheimer 摩擦系数 G 质量流速,˙ m/A c , [ kg/ ( m 2 s )] γ 波纹间距比 h 对流膜系数 [ W/ ( m 2 K )] h f 压力损失,[ m ] η 0 , η f二次传热表面的有效性 j 科尔本系数 K c 入口损失系数 K e 出口损失系数 k 湍流动能,[ J/kg ] 或材料的热导率,[ W/ ( mK )] L , l 长度或翅片长度,[ m ] LMTD 对数平均温差,[ K ] M 马赫数 ˙ m 质量流量,[ kg/s ] µ 动态粘度,[ Pa · s ] N st 斯坦顿数 Nu 努塞尔特数 ν 运动粘度,[ m 2 /s ] P 周长,[ m ] 或流体压力,[ Pa ] Pr 普朗特数 Re 雷诺数 ρ 密度,[ kg/m 3 ] Q 或 ˙ Q 传递的热量,[ W ] Q 平衡 热交换器流之间的热平衡 Q 热 热交换器热侧发出的热量,[ W ] Q 冷热交换器的冷侧,[ W ] φ 流动面积与面面积之比或标准偏差 T 温度,[ K ] U 总传热系数 [ W/ ( m 2 K
红外 (IR) 探测技术的发展主要依赖于 InAs/GaSb SL 外延 [1] 和生长后处理 [2] 的改进。为了实现最佳性能,必须优化器件架构 [3] 以及台面结构,使其侧壁垂直且光滑,以防止像素间距较小的焦平面阵列 (FPA) 中的串扰,其中周长与表面积的纵横比很高 [2, 4]。表面台面的粗糙度、反应产物的存在以及电活性缺陷的表面密度(包括断裂的化学键)都会影响表面漏电流的大小 [5]。台面型结构可以通过湿法或干法蚀刻来创建。先前的研究表明,无机和有机酸性蚀刻剂都适用于 InAs/GaSb 超晶格 (SL) 的湿法蚀刻 [5, 6]。湿法蚀刻有许多优点,例如断裂的化学键数量少、自由载流子密度降低,因此漏电流低 [6, 7]。然而,也会产生不良反应产物并残留在侧壁表面上,导致漏电流的显著增加。湿法蚀刻也是各向异性的,导致台面侧壁几何形状不理想 [8]。另一方面,InAs 和 GaSb 材料的干法蚀刻经常使用气态氯与惰性气体(如氩气)的组合 [9, 10]。气态氯因其高挥发性和高蚀刻速率而受到青睐,而氩离子通过轰击蚀刻表面简化了反应产物的解吸。BCl 3 蚀刻具有较低的蚀刻速率,但使用它会产生更光滑的台面侧壁 [11]。BCl 3 /Ar 等离子体的使用已被证明在分立探测器中是有效的。尽管如此,当用于台面时,它表现出次优性能
上下文。原月经磁盘由于角动量保护而在其母体分子云周围形成新生恒星。随着它们逐渐发展和消散,它们也形成行星。尽管许多建模效果都专门用于它们的形成,但它们的世俗进化问题,从所谓的0类嵌入阶段到II类阶段,据信被认为是隔离的II级阶段,但仍然很熟悉。目标。我们旨在探索嵌入式阶段与II类阶段之间的演变。我们着重于磁场演化以及磁盘与包膜之间的长期相互作用。方法。我们使用GPU加速IDEFIX进行3D,正常,非理想的磁性水力动力学(MHD)世俗核心崩溃模拟,该模拟涵盖了赛车前核心的系统进化,直到第一次降低了液压核心和脉冲定位后,直到100 kyr的100 kyr降低,同时又垂直地定位了垂直的垂直和垂直的效果。 au)正确解决磁盘内部动力学和非轴对称扰动。结果。磁盘的演化导致开普勒旋转中的幂律气体表面密度,该旋转延伸至几个10 au。在初始塌陷期间,磁盘被困在磁盘中的磁性弹力从磁盘形成下的100 mg降低到1 mg,到1 mg。在第一个静水压核形成后,系统分为三个阶段。结论。第一阶段,具有较小的(〜10 au),不稳定,强烈积聚(〜10-5m⊙yr -1)磁盘,在第一阶段中失去了磁性弹力,第二阶段,第二阶段,磁性磁盘通过平稳的磁盘呈圆形,并通过囊罩的速度呈粒料,并具有感知的动量,并具有感知的动量,并具有一定的感光性,并具有一定的感光性,并具有一定的固定磁盘。 Au磁盘在几个10-7 m⊙yr -1处积聚。 初始各向同性包膜最终会进食大规模扩展的吸积流液,其吸积速与原恒星相似(〜10-6 m yr-1)。 一些流媒体材料与磁盘的外边缘碰撞并产生吸积冲击,但材料的一小部分土地在磁盘表面上没有产生任何明显的不连续性。 虽然初始磁盘尺寸和磁化是通过磁制动设定的,但自我实现最终会驱动吸积,因此磁盘最终以重力调节状态。 这种从磁制动到自我重力的演变是由于磁盘沉降后气体和磁场之间的弱耦合所致。 在I类阶段末端(B z〜1 mg)的弱磁场是磁盘中磁性频率稀释的结果,因为它从其初始相对较小的尺寸膨胀。 这种膨胀不应将其解释为粘性膨胀,因为它是由具有较大特定角度动量的大规模彩流人的新吸收材料驱动的。第一阶段,具有较小的(〜10 au),不稳定,强烈积聚(〜10-5m⊙yr -1)磁盘,在第一阶段中失去了磁性弹力,第二阶段,第二阶段,磁性磁盘通过平稳的磁盘呈圆形,并通过囊罩的速度呈粒料,并具有感知的动量,并具有感知的动量,并具有一定的感光性,并具有一定的感光性,并具有一定的固定磁盘。 Au磁盘在几个10-7 m⊙yr -1处积聚。初始各向同性包膜最终会进食大规模扩展的吸积流液,其吸积速与原恒星相似(〜10-6 m yr-1)。一些流媒体材料与磁盘的外边缘碰撞并产生吸积冲击,但材料的一小部分土地在磁盘表面上没有产生任何明显的不连续性。虽然初始磁盘尺寸和磁化是通过磁制动设定的,但自我实现最终会驱动吸积,因此磁盘最终以重力调节状态。这种从磁制动到自我重力的演变是由于磁盘沉降后气体和磁场之间的弱耦合所致。在I类阶段末端(B z〜1 mg)的弱磁场是磁盘中磁性频率稀释的结果,因为它从其初始相对较小的尺寸膨胀。这种膨胀不应将其解释为粘性膨胀,因为它是由具有较大特定角度动量的大规模彩流人的新吸收材料驱动的。