设计高活性催化剂的关键是确定活性的来源。然而,这仍然是一个挑战。[8,9] 特定催化剂的活性传统上与其表面性质有关。因此,具有大表面积、良好导电性和高迁移率的材料被认为是良好的催化剂,因为它们具有丰富的活性位点,有利于氧化还原反应中中间体的吸附和电子转移。这是广泛使用的催化剂合成策略的动机,例如纳米结构化、掺杂、合金化或添加缺陷。每种方法都旨在暴露优先晶体表面或对其进行工程改造以提高其活性。[10–12] 然而,从设计的角度快速准确地确定活性位点的位置仍然是一项艰巨的任务,这使得从许多潜在的有趣材料中发现高性能催化剂成为一项挑战。拓扑材料具有稳健的表面态和高迁移率的无质量电子。 [13–15] 此外,无论是从理论还是实验角度,许多最先进的催化剂(如 Pt、Pd、Cu、Au、IrO 2 和 RuO 2 )都被认为具有拓扑衍生的表面态 (TSS)。[16,17] 因此,有证据表明 TSS 在催化反应中发挥着重要作用。[18,19] 此类状态主要由
拓扑绝缘体的准一维纳米线是基于马约拉纳费米子的量子计算方案的超导混合架构的候选结构。本文研究了低温下选择性生长的 Bi 2 Te 3 拓扑绝缘体纳米带。纳米带定义在硅 (111) 衬底上深蚀刻的 Si 3 N 4 /SiO 2 纳米沟槽中,然后通过分子束外延进行选择性区域生长过程。选择性区域生长有利于提高器件质量,因为不需要进行后续制造来塑造纳米带。在这些无意 n 掺杂的 Bi 2 Te 3 拓扑绝缘体纳米带的扩散传输区域中,通过分析角度相关的通用电导波动谱来识别电子轨迹。当样品从垂直磁场方向倾斜到平行磁场方向时,这些高频电导调制与低频 Aharonov-Bohm 型振荡合并,后者源自沿纳米带周边的拓扑保护表面状态。对于 500 nm 宽的霍尔棒,在垂直磁场方向上可识别出低频 Shubnikov-de Haas 振荡。这揭示了一个拓扑、高迁移率、2D 传输通道,部分与材料本体分离。
利用其电子结构的特性来观察独特的物理现象,例如手性[15–17]和轴引力异常、[18]圆形光电效应、[19–20]手性声波、[21–22]表面态增强的埃德尔斯坦效应[23]或最近提出的手性霍尔效应。[24]大多数这些效应的观察取决于是否可以轻松访问WSM的拓扑电子态。在这方面,抑制非拓扑(平凡)表面态以及修改费米能级位置以获得所需费米面拓扑的能力将允许充分揭示拓扑表面态对物理可观测量的作用,此外,还可以按需构造费米面以利用电、声或光可测输出。到目前为止,电子结构的多样性是通过探索不同的 WSM 实现的,但对同一材料中拓扑能带形状和大小的真正控制仍然难以实现,主要是因为缺乏自下而上的超高真空合成方法,无法控制表面终止和费米能级位置,例如通过掺杂或应变。需要克服这一挑战才能实现费米能级设计的韦尔半金属异质结构,从而产生大量新平台来探索基于拓扑的基本现象和设备应用。在这项工作中,我们展示了 I 型韦尔半金属 NbP 电子结构的两种显著修改,这得益于成功的外延薄膜生长合成路线。 [25] 首先,由于表面悬空键被有序磷终端饱和,NbP 的蝴蝶结状(平凡)表面态被完全抑制,表现为(√2×√2)表面重构。其次,通过用 Se 原子化学掺杂表面,费米能级发生约 + 0.3 eV(电子掺杂)的大幅偏移,同时保留了原始的 NbP 能带结构特征,从而首次在实验中可视化了远高于 Weyl 点的拓扑能带色散,并强调了通过分子束外延过程中的表面化学掺杂可以实现的大费米能级可调性。我们的工作为实现最近的理论提议开辟了可能性,例如依赖于纯拓扑
理解强自旋轨道耦合的窄带半导体中自旋极化载流子弛豫的基本散射过程,对于自旋电子学的未来应用至关重要。[1–8] 一个核心挑战是利用自旋轨道相互作用,在没有外部磁场的情况下实现高效的信息处理和存储。[6–12] 当表面或界面发生反转不对称时,或当自旋轨道相互作用存在于块体中时,可引起较大的拉什巴效应。[13–17] 结果,电子态的自旋简并度被提升,其自旋分裂变为 Δ E = 2 α R | k |,它一级线性依赖于动量| k |和拉什巴效应的强度,用所谓的拉什巴参数 α R 表示。 [18,19] 较大的 Rashba 效应被认为是实现增强自旋极化电流控制、[20,21] 高效自旋注入 [10,22] 和自旋电荷相互转换、[23–26] 较大自旋轨道扭矩、[5,27] 的关键。
交替磁性影响电子态,从而允许非相对论自旋分裂的存在。由于交替磁性自旋分裂存在于 3D 布里渊区的特定 k 路径上,我们预计交替磁性表面态将存在于特定的表面取向上。我们揭示了交替磁性表面态的性质,考虑了三个代表性空间群:四方、正交和六方。我们计算了 3D 布里渊区的 2D 投影布里渊区。我们研究了表面及其各自的 2D 布里渊区,确定了具有相反符号的自旋分裂合并消除了交替磁性的位置以及哪些表面上保留了交替磁性。观察三个主要表面取向,我们发现在几种情况下,两个表面对交替磁性视而不见,而交替磁性在一个表面取向上仍然存在。哪个表面保留了交替磁性还取决于磁序。我们定性地表明,与盲表面正交的电场可以激活交替磁性。我们的结果预测了哪些表面需要分裂以保留表面或界面中的交替磁性,这为通过自旋分辨的 ARPES 观察薄膜中的非相对论交替磁性自旋分裂以及将交替磁性与其他集体模式对接铺平了道路。我们为研究交替磁性对平凡和拓扑表面状态的影响开辟了未来的前景。
近年来,外尔半金属(WSM)在固态研究中引起了广泛关注。它们的独特性质是由电子能带结构中导带和价带的单个接触点决定的,该结构具有线性电子色散。[1,2] 在这种所谓的外尔锥中,电子表现为无质量的准相对论费米子,并由狄拉克方程的相应解外尔方程描述。[3] 这些外尔节点总是以相反手性的成对出现,在动量空间中分开并由拓扑保护的表面态(费米弧)连接。 [4,5] 这种特殊的电子结构产生了许多材料特性,例如高电子迁移率、[6,7] 低温超导性、[8–10] 巨大的磁阻、[11,12] 强烈的异常霍尔效应、[7,11,13] 以及 Adler–Bell–Jackiw 异常。[14–17]
AlGaN/GaN高电子迁移率晶体管(HEMT)或金属绝缘体半导体HEMT(MIS-HEMT),凭借优越的极化诱导高迁移率二维电子气(2DEG),因其高开关速度、低寄生参数和低导通电阻而受到广泛关注,并在高频射频和功率开关应用方面都取得了公认的成功[1-4]。通常在厚钝化电介质(如SiNx)上设置栅极和/或源极场板,以减轻栅极漏极区域的高电场并获得更高的击穿电压[5-7]。它们也有助于抑制表面态引入的电流崩塌[5,8]。然而,场板结构将引入额外的寄生电容,导致更高的VDS×IDS功率损耗和更长的开关持续时间。此外,钝化层还会引入钝化电介质/(Al)GaN界面态,甚至电介质本身的体态,它们的捕获/去捕获过程会引起寄生电容的动态漂移,导致实际应用中开关转换紊乱,dV/dt控制失效[9-11]。
尽管边缘态是拓扑物理学的基本性质,但直接测量拓扑半金属费米弧的电子和光学特性一直是实验上的重大挑战,因为它们的响应常常被金属块体所淹没。然而,表面态和块体态携带的激光驱动电流可以在非对称晶体中以不同的方向传播,这使得这两个成分很容易分离。受最近理论预测 [1] 的启发,我们测量了在 0.45−1.1eV 入射光子能量范围内源自非对称手性韦尔半金属 RhSi 费米弧的线性和圆形光电效应电流。虽然在研究的能量范围内表面光电流的方向偏离了理论预期,但我们的数据与预测的圆形光电效应光谱形状与光子能量的关系非常吻合。还观察到了由线性光电效应引起的表面电流,出乎意料的结果是只需要六个允许的张量元素中的两个来描述测量值,这表明出现了与晶体空间群不一致的近似镜像对称性。
这种材料在有机发光领域具有极高的应用前景。例如,由于量子或电介质限制效应,光学带隙随着有机间隔物之间八面体层数的减少而变宽。[3,4] 最近,发现表面态是由层状钙钛矿的局部结构扭曲引起的。[5] 由于高发射量子效率和光学特性的大可调性,人们致力于利用准二维/三维钙钛矿[6–8]和低维钙钛矿制造发光二极管 (LED)。[9–14] 典型的准二维/三维和低维钙钛矿基 LED 输出高亮度 10 3 – 10 5 cd m − 2 以及 10–20% 的外部量子效率。 [9,12,15,16] 支撑如此高性能的发射机制有多种物理原因。例如,有人提出,低维钙钛矿中激子的高结合能起着重要作用,促进了辐射复合,从而产生了高发射量子产率。[17] 其他研究将高效发射归因于薄膜上不同厚度(或 n 数)的量子阱形成的能量景观,这些量子阱将电荷载流子级联到能量最低的发射位点进行复合。[14]
铋是一种新兴的量子材料,具有令人着迷的物理特性,例如半金属-半导体 (SM-SC) 跃迁 1-8 和拓扑绝缘态。9-12 分子束外延 (MBE) 生长技术的发展已经生产出高质量的 Bi 薄膜,其中过去五十年理论上预测的丰富物理特性可以通过实验实现。例子包括但不限于卓越的表面态自旋和谷特性、2,13 超导性、14 瞬态高对称相变 15 和非谐散射。16,17 此外,介电常数的负实部和较小的虚部的结合,以及强的带间跃迁,使其在带间等离子体中应用前景广阔。 18 尽管如此,单晶 Bi 纳米薄膜在实际器件中的应用仍然受到限制,因为它们只能在晶格匹配的衬底上生长,例如硅 (111)、19 BaF 2 (111)、20 和云母。21 最近,Walker 等人介绍了一种双悬臂梁断裂 8,22 和热释放胶带 23 技术,用于将大面积 MBE Bi 纳米薄膜从 Si (111) 干转移到任意衬底;他们还表明,转移薄膜的电学/光学/结构特性与原生薄膜相当。8,23 该技术可以研究 Bi 在任意衬底上的独特电子、声子和自旋电子特性,例如用于新兴器件的透明、柔性、磁性或拓扑绝缘衬底。大多数