冷却剂失灵事故 (LOCA) 是核电站设计中最常考虑的事故情景之一 [1]。它发生在一次回路中断后,导致压力急剧下降,从而引起全包壳过热。水蒸气和高温引起的氧化会破坏包壳,并可能导致包壳爆裂,释放裂变产物 [2]。为了模拟此类事故,将在 CEA Cadarache 中心的 Jules Horowitz 研究反应堆中实施轻水单棒 LOCA 实验调查设备 (LORELEI) 测试装置 [3]。它将允许研究全包壳在这种条件下的行为 [4]。包壳表面温度监测在该实验中至关重要;它允许将爆裂条件与温度联系起来。然而,这种测量必须是非侵入性的,以尽量减少扰动并避免爆裂条件的任何变化,这排除了使用热电偶。在这种情况下,基于高温计的温度测量技术提供了一种合适的解决方案 [5]。
2020 年 1 月 13 日至 17 日,在维也纳国际原子能机构总部,日本原子能机构、洛斯阿拉莫斯国家实验室和国际原子能机构核数据部门共同召开了一次特别会议,重点讨论了 Hauser-Feshbach 理论在裂变产物产量 (FPY) 评估和裂变建模中的应用。这次会议是为各研究所计划建立新的 FPY 数据库所做的准备工作。我们讨论了 Hauser-Feshbach 统计衰变模型的实施情况,以计算裂变碎片的去激发,并对各研究所可用的三个代码进行了相互比较——CCONE(日本原子能机构)、CoH/BeoH(洛斯阿拉莫斯国家实验室)和 TALYS(国际原子能机构)。讨论包括我们可以通过模型生成的裂变可观测量类型、初始碎片配置的估计(裂变后和瞬时粒子发射前),以及这些代码的未来开发,以使其适用于 FPY 数据评估。
I. 对人体的辐射剂量 130 � II. 来自废弃地下核试验场的核素 131 � III.与全面禁核试条约核查有关的颗粒放射性核素 133 � 类别 1. 燃料材料的残留物 136 � 类别 2. 燃料材料的非裂变反应产物 139 � 类别 3. 裂变产物 141 � 类别 4. 非燃料弹材料的活化产物 142 � 类别 5. 地下爆炸周围的填塞(填充)材料和岩石中的活化产物 143 � 类别 6. 近地表大气爆炸下方地面中的活化产物 144 类别 7. 水下或近海面爆炸周围海水中的活化产物 144 � 类别 8. 大气爆炸周围空气中的活化产物 144 � 类别 9. 来自中子通量探测器的活化产物 145 � 类别 10. 添加的示踪剂 145 � 制定全面禁核试条约相关颗粒放射性核素最终清单核素 146 � IV. 与《全面禁试条约》国际监测系统有关的惰性气体放射性核素 153 � V. 与现场视察有关的颗粒和气体核素 154 �
核电站运行的最大经验是核海军推进,特别是航空母舰和潜艇。这些积累的经验可能成为拟议的新一代紧凑型核电站设计的基础。核动力潜艇的任务正在根据信号情报收集和特种作战重新定义。核动力舰艇约占美国海军作战舰队的 40%,包括整个海基战略核威慑力量。美国海军的所有作战潜艇和一半以上的航空母舰都是核动力的。这里的主要考虑因素是核动力潜艇不像传统动力装置那样消耗氧气,并且在燃料补给之前具有较长的续航能力或任务时间;仅受船上可用的食物和空气净化用品的限制。另一个独特的考虑是使用高浓缩铀 (HEU) 来提供紧凑的反应堆系统,该系统具有足够的内置反应性,可以克服氙气反应堆的死区时间,从而实现快速重启和加油之间的长燃料燃烧期。在第二次世界大战期间,潜艇使用可以在水面运行的柴油发动机,为大量电池充电。这些可以在潜艇潜水时使用,直到放电。此时,潜艇必须重新浮出水面为电池充电,并且容易受到飞机和水面舰艇的探测。尽管使用特殊的通气管装置将空气吸入和排出浅潜于水面以下的潜艇,但核反应堆理论上为其提供了无限的潜水时间。此外,核燃料的高比能(即每单位重量的能量)消除了跟随水面或水下海军舰艇舰队的脆弱油轮舰队不断加油的需要。另一方面,核反应堆一次加油足以满足长时间的需要。现代海军反应堆的浓缩度高达 93%,U 235 能够达到 97.3%,设计为在其 20-30 年的使用寿命中每隔 10 年或更长时间才加油一次,而陆基反应堆使用的燃料浓缩度低至 U 235 的 3-5%,需要每隔 1-1 1/2 年加油一次。新反应堆的设计使用寿命为航母 50 年,潜艇 30-40 年,这是弗吉尼亚级潜艇的设计目标。核心中含有可燃毒物,例如钆或硼。这些允许较高的初始反应性,以补偿裂变产物毒物的积累
高温燃料的快速发展对于部署核热推进(NTP)系统至关重要。NTP使用核反应堆将流动的氢气流到> 2000 K,提供了高脉冲推进,大约是化学火箭的能力的两倍。但是,两种由美国平民舰队运营的燃料形式,而历史方法的其他燃料与当前的绩效和运营安全要求不相容。一种称为Tristructral各向同性(TRISO)的替代燃料形式可以满足这些要求。Triso颗粒每个都包含一个可裂变的微球(例如uo 2),由热解碳(PYC),SIC和PYC三重涂层。相应的PYC和SIC“壳”为每个制造的Triso颗粒(〜1 mm)提供裂变产物(FP)遏制系统和压力容器。具体而言,已证明了辐照的Triso颗粒中的FP遏制(1,2),代表了“基于材料的”工程控制,以实现操作安全性。从2011年开始,Triso颗粒的合并是通过在烧结的SIC矩阵中随机堆积进行的。SIC矩阵有效地替换了HTGR中发现的典型石墨。SIC表现出次要的FP障碍,以及其他不同的燃料效果。SIC被氧化物添加剂烧结(3)。使用这种类型的方法,也称为纳米浸润瞬态共晶(nite)SIC,在没有损坏Triso颗粒的情况下进行整合。通常,需要低温和施加压力(约1850°C,20 MPa)以防止Triso损坏。这种方法类似于仔细的基质巩固,以防止复合烧结中的纤维损坏。Nite SIC是已知辐射稳定的少数SIC材料之一。(4)此外,使用脉冲电流烧结(PECS)轴承轴轴轴承堆叠的TRISO颗粒阵列验证了零破裂FCM燃料的工业可行性方法。最近,在2000K的热氢条件下,Benensky等人(5)在2000K的热氢条件下进行了氢测试,显示出相对较高的质量损失动力学和氧化物晶界边界相的浸出。目前尚不清楚Nite SIC的其他变体是否具有相同的局限性。其他碳化物(例如ZRC)的稳定性通过数量级和2000k以上的稳定性提高。
核电站运行的最大经验是核海军推进,特别是航空母舰和潜艇。这些积累的经验可能成为拟议的新一代紧凑型核电站设计的基础。核动力潜艇的任务正在根据信号情报收集和特种作战重新定义。核动力舰艇约占美国海军作战舰队的 40%,包括整个海基战略核威慑力量。美国海军的所有作战潜艇和超过一半的航空母舰都是核动力的。这里的主要考虑因素是核动力潜艇不像传统发电厂那样消耗氧气,而且它们在燃料补给之前具有很长的续航能力或任务时间;仅受船上可用的食物和空气净化用品的限制。另一个独特的考虑因素是使用高浓缩铀 (HEU) 来提供紧凑的反应堆系统,该系统具有足够的内置反应性,以克服氙气反应堆的死区时间,从而实现快速重启和加油之间的长燃料燃烧期。第二次世界大战期间,潜艇使用可以在水面运行的柴油发动机,为大量电池充电。这些电池随后可以在潜艇下潜时使用,直到电量耗尽。此时潜艇必须浮出水面为电池充电,并且容易受到飞机和水面舰艇的探测。尽管使用特殊的通气管装置将浅潜水下的潜艇吸入和排出空气,但核反应堆理论上可以为其提供无限的下潜时间。此外,核燃料的高比能或每单位重量的能量消除了跟随水面或水下海军舰艇舰队的脆弱油轮舰队不断加油的需要。另一方面,核反应堆一次加油足以满足长时间的需要。现代海军反应堆的浓缩度高达 93%,铀 235 的浓缩度可达 97.3%,设计为在 20-30 年的使用寿命中每 10 年或更长时间更换一次燃料,而陆基反应堆使用的燃料浓缩度低至铀 235 的 3-5%,每 1-1.5 年需要更换一次燃料。新堆芯的设计使用寿命为在航母上 50 年,在潜艇上 30-40 年,这是弗吉尼亚级潜艇的设计目标。堆芯中加入了可燃毒物,如钆或硼。这允许较高的初始反应性,以补偿裂变产物毒物在反应堆寿命期间的积累