虽然大多数样本类型的FastPrep®速度设置为4.0 m/s 20秒,但某些样品可能需要更严格的条件才能完全裂解。均质化速度和/或时间可以增加。当使用涡旋而不是FastPrep®进行裂解时,可以通过在溶液基质中进行涡旋之前在液氮中磨碎样品。涡旋持续时间也可以根据需要延长。
在这项研究中,研究人员专注于IL-18。他们发现肿瘤细胞可以通过caspase-3裂解产生新型的IL-18形式,该裂解与传统的成熟IL-18途径无关。与成熟的IL-18不同,这种短形式不会退出细胞,而是进入细胞核,在该细胞核中促进了STAT1和ISG15分泌的磷酸化,从而增强了NK细胞抗肿瘤功能。
抑制蛋白:将20 mg溶解在10毫升的水或PBS中以获得2mg/ml的库存(1000x)。工作浓度为2µg/ml,因此在1 ml裂解缓冲液中加入1µL汤。亮肽素:将50毫克溶解在10.5毫升的水中,获得10毫米汤(1000x)。工作浓度为10 µm,因此在1 mL裂解缓冲液中加入1μL汤料。
组分 24 次反应 48 次反应 P-2014-24 P-2014-48 CP1(洗涤缓冲液) 28 ml 2 x 28 ml CP2(抗体缓冲液) 15 ml 30 ml CP3C(5X 裂解缓冲液 I) 12 ml 24 ml CP3D(裂解缓冲液 II) 3 ml 6 ml CP3E(裂解缓冲液 III) 2 ml 4 ml CP3F(裂解缓冲液 IV) 1.5 ml 5 ml CP4(ChIP 稀释缓冲液) 2 ml 6 ml CP5(DNA 释放缓冲液) 2 ml 2 x 2 ml CP6(反向缓冲液) 2 ml 2 x 2 ml CP7(结合缓冲液) 5 ml 8 ml CP8(洗脱缓冲液) 0.6 ml 1.2 ml 蛋白酶抑制剂混合物 (100X)* 25 µl 50 µl 非免疫 IgG (1 mg/ml)* 10 µl 10 µl 抗二甲基 H3-K9 (1 mg/ml)* 5 µl 8 µl 蛋白酶 K (10 mg/ml)* 25 µl 50 µl 8 孔检测条(带框架) 3 6 8 孔条盖 3 6 F-Spin Column 30 50 F-Collection Tube 30 50 * 使用前将溶液旋至底部。 运输和储存
组分 24 次反应 48 次反应 P-2014-24 P-2014-48 CP1(洗涤缓冲液) 28 ml 2 x 28 ml CP2(抗体缓冲液) 15 ml 30 ml CP3C(5X 裂解缓冲液 I) 12 ml 24 ml CP3D(裂解缓冲液 II) 3 ml 6 ml CP3E(裂解缓冲液 III) 2 ml 4 ml CP3F(裂解缓冲液 IV) 1.5 ml 5 ml CP4(ChIP 稀释缓冲液) 2 ml 6 ml CP5(DNA 释放缓冲液) 2 ml 2 x 2 ml CP6(反向缓冲液) 2 ml 2 x 2 ml CP7(结合缓冲液) 5 ml 8 ml CP8(洗脱缓冲液) 0.6 ml 1.2 ml 蛋白酶抑制剂混合物 (100X)* 25 µl 50 µl 非免疫 IgG (1 mg/ml)* 10 µl 10 µl 抗二甲基 H3-K9 (1 mg/ml)* 5 µl 8 µl 蛋白酶 K (10 mg/ml)* 25 µl 50 µl 8 孔检测条(带框架) 3 6 8 孔条盖 3 6 F-Spin Column 30 50 F-Collection Tube 30 50 * 使用前将溶液旋至底部。 运输和储存
摘要。藻类细菌群落以生产破坏藻酸盐的抗生素酶而闻名,这些酶是生物膜的主要成分的藻酸盐。生物膜相关感染是危险的,因为它们对抗生素和人类免疫系统产生了抗性。这项工作报告了基于分子系统学和系统发育分析16S rRNA的几种海洋藻素细菌,可能是新的物种。它们是从不同的棕色藻类氢层sp中分离出来的。居住在印度尼西亚Wakatobi的Hoga岛周围的海洋中。这项研究旨在揭示这些细菌分离株的分子身份和亲属关系,以理解其更多的特性,即氢氯拉斯sp的共生体。分子鉴定和系统发育树的结构是根据使用27F-1492R引物的聚合酶链反应对16S rRNA基因扩增的序列进行的。可以获得总共31种棕色藻类氢氯拉鲁斯共生细菌的分离株,表明藻类是海洋细菌的有吸引力的共生菌宿主。能够产生藻酸盐裂解酶和琼脂酶的分离株数量为15。然而,在用最小藻酸盐培养基进行确认测试后,只有15个分离株中只有12个是藻酸盐裂解酶生产者。在具有最高藻体级指数的8个分离物上的分子鉴定显示了与3种不同属的最接近的关系:颤音,拟南芥和aestuariibacter。基于BLAST(基本局部对齐搜索工具)分析,5比其对齐结果的最高命中率低于97%的相似性水平,表明它们可能是新物种。这些发现表明了海洋棕色藻类氢层sp的潜力。是藻素溶液的潜在宿主。关键词:琼脂酶,藻酸盐裂解酶,海洋细菌,瓦卡托比。简介。抗生素酶是可用于控制和去除细菌生物膜的酶的类型。这些酶溶解了包含细菌细胞外基质的多糖,蛋白质和核酸。抗生素酶包括脂肪酶,可防止纤维旁溶血生物膜和纤维素酶的生长,这些脂肪酶会分解大多数生物膜中存在的纤维素(Gutiérrez2019)。也已经证明了脂肪酶,纤维酶和蛋白酶K等组合酶在预防和消除副溶血性生物膜上有效(Li et al 2022)。其他生物膜控制酶包括β-葡萄糖酶,蛋白酶和淀粉酶,它们可以分解EPS基质并防止生物膜的产生。抗生素酶被认为比传统方法更有效,更环保,例如侵袭性化学物质,例如氢氧化钠或次氯酸钠,它们可以腐蚀机械和材料(Blackman 2021)。
a)MTT-Cleavage:2%TFA/DCM; b)fmoc-aaa(x)-OH耦合; c)FMOC-裂解2%哌啶/2%DBU/DMF,0.1 m HOBT; d)从树脂裂解2.5%TIS/ 2.5%H 2 O/ 95%TFA(RT,3 h); e)盐交换pyr.hcl 10 eq/meoh(1 h); F)环化:BOP 3EQ/HOBT 3EQ/DIPEA 6EQ/DMF(C = 0.5 mg/ml,RT,24 h); g)氨基乙酸脱身0.2 M NH 4 OAC溶液(pH 5.0)/1 M甲氧基胺(RT,1 H); h)在0.2 m NH 4 OAC溶液中(pH 5.0)中的daunorubicin结合(RT,24 h); i)FMOC-裂解4%氢氮/DMF(RT,2 h)。图2:环状kngre(a)和Xngre(b)药物的合成的示意图。
摘要 确定转录因子 (TF) 的体内 DNA 结合特异性几乎完全依赖于染色质免疫沉淀 (ChIP)。虽然 ChIP 揭示了 TF 结合模式,但其分辨率较低。采用核酸酶的高分辨率方法,例如 ChIP-exo、染色质内源性裂解 (ChEC-seq) 和 CUT&R UN,可解决 TF 占用和结合位点保护问题。ChEC-seq 中内源性 TF 与微球菌核酸酶融合,既不需要固定也不需要抗体。然而,有人认为 ChEC 期间 DNA 裂解的特异性低于 ChIP 或 ChIP-exo 识别的峰的特异性,这可能反映了转录因子与 DNA 的非特异性结合。我们简化了 ChEC-seq 协议,以最大限度地减少核酸酶消化,同时提高裂解 DNA 的产量。 ChEC-seq2 的切割模式在重复实验和已发表的 ChEC-seq 数据之间具有高度可重复性。结合 DoubleChEC(一种可去除非特异性切割位点的新型生物信息学流程),ChEC-seq2 为三种不同的酵母 TF 确定了高可信度的切割位点,这些位点因其已知结合位点而高度富集,并且与已知靶基因相邻。