摘要 随着测序技术的快速发展和随之而来的测序成本的降低,大量观赏植物被完成了测序,其基因组研究也从基因克隆和标记开发转向全基因组分析。在全基因组水平上深入了解基因组的结构和功能,不仅有助于通过基因工程改造观赏植物的香气、颜色和花形等性状,还可以通过比较基因组学分析推断观赏植物的亲缘关系和进化历史。本文综述了测序策略的现状以及基因组学在观赏植物起源和进化研究中的应用,并指出了观赏植物基因组学研究面临的挑战。利用基因组学、基因编辑和分子设计聚合育种等前沿技术,可以促进我们了解观赏植物重要性状的遗传调控机制和种质创新,有望大幅提高观赏植物的育种效率。
您是否观察到社区中的某些人在种植和出售蔬菜作物和观赏植物?作为一名年轻的企业家,在加纳生产蔬菜和观赏植物可能是一个有益的盈利企业。观赏植物用于增强许多新房屋的景观,并且凭借正确的技能和知识,您可以将其转变为成功的企业。在本节中,我们将首先探讨成功的植物作物和观赏植物企业的成功启动套餐的特征。此外,本节旨在帮助学习者分类蔬菜作物和观赏植物企业成功生长的特征和模式。本节的相关性是为了帮助您获得有关如何成功生产蔬菜作物和观赏植物的知识和技能,以较低的成本吸引更多的加纳人购买这些植物。本节还将向您介绍一些创新和新兴技术,以改善全球农业生产。它还将帮助您评估这些技术在蔬菜作物和观赏植物生产中的应用。您将研究组织培养物在植物作物和观赏植物企业中的使用和重要性。在本节的学习旅程结束时,您将能够识别和解释农业中使用的各种新兴技术,例如温室,智能农业,自动化等。本节的相关性是为了帮助您获取有关用于使种植蔬菜作物和观赏植物更容易的新兴技术的知识。再次,本节旨在增强您对创新和技术的欣赏,以及它们如何提高资源效率,提高植物健康并提高作物产量。
您是否注意到您所在社区的一些人种植和销售蔬菜作物和观赏植物?作为一名年轻的企业家,在加纳生产蔬菜和观赏植物可以是一项回报丰厚且有利可图的事业。观赏植物用于美化许多新房的景观,只要具备适当的技能和知识,您就可以将其变成一项成功的事业。在本节中,我们将首先探讨蔬菜作物和观赏植物企业成功的创业方案的特点。此外,本节旨在帮助学习者对蔬菜作物和观赏植物企业成功发展的特征和模式进行分类。本节的相关性在于帮助您获得如何以较低的成本成功生产蔬菜作物和观赏植物的知识和技能,以吸引更多加纳人购买这些植物。本节还将向您介绍一些创新和新兴技术,这些技术可改善全球农业生产。它还将帮助您评估这些技术在蔬菜作物和观赏植物生产中的应用。您将了解组织培养在蔬菜作物和观赏植物企业中的用途和重要性。在本部分的学习之旅结束时,您将能够识别和解释农业中使用的各种新兴技术,例如温室、智能农业、自动化等。本节的相关性在于帮助您了解用于使种植蔬菜作物和观赏植物更容易的新兴技术。同样,本节旨在提高您对创新和技术的欣赏,以及它们如何提高资源效率、增强植物健康和提高作物产量。
观赏植物市场具有全球经济意义,其中欧洲是主要参与者,2017 年荷兰的营业额达到 47 亿欧元(FloraHolland,2018 年)。人们不断寻求具有新特性和改良特性的栽培品种,例如花瓣/叶子颜色、增强的香味、改良的植物结构、生物/非生物胁迫和延长的采后寿命,例如对植物激素乙烯的耐受性(Azadi 等人,2016 年)。虽然通过常规和突变育种可以实现新特性的转移,但它也受到限制。例如,杂交障碍阻止了远亲物种特性的自然渗入(Kuligowska 等人,2016 年;Shibata,2008 年;Teixeira da Silva 等人,2011 年)。通过引导突变的基因工程已经获得了一种解决此问题的方法,这与观赏植物基因组测序计划的发展相协同(由 Azadi 等人,2016 年审查)。
进入数字时代,人类生活的文化越来越密不可分,与使用电磁波在支持人类生活非常有用的情况下,但另一方面,它在威胁人类健康的辐射形式中也具有负面影响。只有少数人意识到,除了房间内部或外部装饰外,观赏植物具有许多好处。几种类型的观赏植物具有吸收电子设备发出的电磁辐射的能力。在这项简单的物理研究中,进行了测量,以比较几种类型的观赏植物与电磁波辐射的吸收,这些植物是Karet Kebo,Betel,betel,多汁的植物,常春藤植物和蛇植物。研究结果表明,蛇植物吸收电磁波辐射的能力比其他植物最大。对常春藤进行的研究表明,观赏植物对电磁波辐射的吸收受植物到辐射源的距离的影响,在这种情况下,观赏植物与电磁波辐射源之间的距离越接近,电磁波辐射的来源就越大,导致辐射的吸收越大,导致电子辐射的强度越大。根据指数图,电磁波辐射吸收的变化趋势显示,距离的距离增加。
随着生活水平的不断提高,观赏植物作为园林绿化和家庭园艺的主要对象,引起了我们的关注,为我们提供了精神上的享受。国际贸易和经济全球化导致观赏植物生产和消费逐渐扩大[1],刺激了观赏植物产业创制新品种以满足需求。很久以前,人类在偶然揭开自然杂交的神秘面纱后,就开始模拟自然授粉,将具有不同表型的植物杂交以获得一种或多种性状,以获得更优良的品种。后来,由于现代科技的发展,“转基因”技术成为一种直接改变植物表型的方法。与传统杂交育种相比,转基因技术大大缩短了育种时间,提高了育种效率,并且可以在育种计划中更精确地针对某些性状进行育种[2]。
digitalis purpurea(foxglove)是一种广泛分布的装饰植物,也是生物医学复合地高辛的生产商。在这里,我们提出了一个长期读取测序的基于测序的基因组序列,该基因组序列和基因模型的相应预测。高组装连续性由4.3 Mbp的N50表示,并且发现约96%的完整BUSCO基因支持完整性。这种基因组资源为对D. purpurea的花色素沉着的深入研究铺平了道路。鉴定了花色苷生物合成的结构基因和相应的转录调节剂。 红色和白色开花植物的比较显示,白色开花植物中花青素合酶基因的插入很大,很可能使该基因具有非功能性,并且可以解释花青素色素沉着的丧失。 此外,花青素生物合成激活剂MYB5在白色开花植物中显示了18 bp的缺失,导致蛋白质中6种氨基酸损失。 此外,我们发现在DPTFL1/CEN基因中插入大量插入,负责大末端花的发展。鉴定了花色苷生物合成的结构基因和相应的转录调节剂。红色和白色开花植物的比较显示,白色开花植物中花青素合酶基因的插入很大,很可能使该基因具有非功能性,并且可以解释花青素色素沉着的丧失。此外,花青素生物合成激活剂MYB5在白色开花植物中显示了18 bp的缺失,导致蛋白质中6种氨基酸损失。此外,我们发现在DPTFL1/CEN基因中插入大量插入,负责大末端花的发展。
以人类对美和审美价值的欣赏为基础,观赏作物的新时代以实施创新技术并将符号转化为有形资产为基础。植物生物技术的最新进展引起了科学界和工业界的极大兴趣,特别是在改变所需植物性状和开发未来观赏作物方面。通过利用组学方法、基因组数据、基因工程和基因编辑工具,科学家相继探索了观赏作物品种的花诱导、植物结构、抗逆性、可塑性、适应性和植物修复等性状调控背后的潜在分子机制和潜在基因。这些进步的迹象为设计和提高观赏植物的广泛应用效率奠定了理论和实践基础。在这篇综述中,我们简要总结了现有文献和生物技术方法在改善观赏植物重要性状方面的进展。我们还讨论了未来的观赏植物,例如发光植物、生物/非生物胁迫检测器和污染减排,以及通过驯化野生物种引进新的观赏品种。
可以从三个不同的层面描述生物多样性:生态系统、物种和基因。每个组成部分都有其组成和结构。通过技术进步,人类一直在改变其利用生物多样性的方式。从利用生态系统、成为猎人/采集者,到随着农业和畜牧业的出现而驯化多个物种,再到今天通过开发 NBT 来修改基因。自起源以来,人类一直将植物界作为其食物、饮料、药房、仪式和装饰品的来源。随着农业的开始,人类从自然种群中挑选出最适合自己的个体,进行定向杂交,选择认为合适的个体,丢弃其余的个体。这一过程没有任何限制。在《生物多样性公约》及其补充协议《名古屋议定书》生效之前,遗传资源属于人类,没有任何规则来管理其获取和合理使用。世界市场上有许多原产于南美洲的观赏植物品种,这些品种在原产国商业化时必须支付专利使用费。观赏植物市场需求量很大,渴望新奇,南美洲是一个生物多样性极其丰富的地区。它拥有约 600 种观赏植物(12% 为园林植物)。源自该中心的流行观赏植物有花烛、金盏花、花叶万年青、喜林芋、大岩桐、花叶芋、一串红、天芥菜、马鞭草和牵牛花(白花菜、紫花地丁和三色地丁)(De,2017 年)。在《生物多样性公约》和名古屋的框架内,观赏遗传资源可能是该市场新品种的来源,从而对该地区产生社会经济影响,产生不同资质的直接和间接雇员。另一方面,全球气候变化、优质灌溉水资源短缺、
可以从三个不同的层面描述生物多样性:生态系统、物种和基因。每个组成部分都有其组成和结构。通过技术进步,人类一直在改变其利用生物多样性的方式。从利用生态系统、成为猎人/采集者,到随着农业和畜牧业的出现而驯化多个物种,再到今天通过开发 NBT 来修改基因。自起源以来,人类一直将植物界作为其食物、饮料、药房、仪式和装饰品的来源。随着农业的开始,人类从自然种群中挑选出最适合自己的个体,进行定向杂交,选择认为合适的个体,丢弃其余的个体。这一过程没有任何限制。在《生物多样性公约》及其补充协议《名古屋议定书》生效之前,遗传资源属于人类,没有任何规则来管理其获取和合理使用。世界市场上有许多原产于南美洲的观赏植物品种,这些品种在原产国商业化时必须支付专利使用费。观赏植物市场需求量很大,渴望新奇,南美洲是一个生物多样性极其丰富的地区。它拥有约 600 种观赏植物(12% 为园林植物)。源自该中心的流行观赏植物有花烛、金盏花、花叶万年青、喜林芋、大岩桐、花叶芋、一串红、天芥菜、马鞭草和牵牛花(白花菜、紫花地丁和三色地丁)(De,2017 年)。在《生物多样性公约》和名古屋的框架内,观赏遗传资源可能是该市场新品种的来源,从而对该地区产生社会经济影响,产生不同资质的直接和间接雇员。另一方面,全球气候变化、优质灌溉水资源短缺、