视紫红质基因 RHO 的突变是常染色体显性视网膜色素变性 (adRP) 的很大一部分原因。患者在临床上分为两类:一类是早发性全视网膜光感受器变性,另一类是病情缓慢进展的患者。后一类患者适合接受光感受器定向基因治疗,而前一类患者则适合将光反应蛋白递送至中间神经元或视网膜神经节细胞。RHO adRP 的基因治疗可能针对 DNA 或 RNA 水平的突变基因,而其他疗法则保留光感受器的活力而不解决潜在的突变。在动物模型中,纠正 RHO 基因和替换突变 RNA 显示出良好的前景,而维持可行的光感受器有可能延缓中央视力的丧失,并可能保留光感受器以进行基因定向治疗。
。cc-by-nc-nd 4.0国际许可证未通过同行评审获得证明)是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是此预印本的版权持有人(本版本发布于2024年5月5日。; https://doi.org/10.1101/2024.05.05.05.02.592211 doi:biorxiv Preprint
史蒂文尼克博士指出,视紫红质基因突变是导致视紫红质偏瘫的常见原因。视紫红质是眼睛视杆细胞中的一种感光蛋白。在互联网上的一个特殊数据库中可以查找视紫红质的序列。它看起来像这样。 >健康视紫红质 augaauggcacagaaggcccuaacuucuacgugcccuucuccaaugcgacggguguggua cgcagccccuucgaguacccacaguacuaccuggcugagccauggcaguucuccaugcug gccgccuacauguuucugcugaucgugcugggcuuccccaucaacuuccucacgcucuac gucaccguccagcacaagaagcugcgcacgccucucaacuacauccugcucaaccuagcc guggcugaccuucaugguccuagguggcuucaccagcacccucuacaccucucugcau ggauacuucgucuucggcccacaggaugcaauuuggagggcuucuugccacccugggc ggugaaauugcccugugguccuugguggucuggccaucgagcgguacgugguggugugu aagcccaugagcaacuuccgcuucggggagaaccaugccaucaugggcguugccuucacc ugggucauggcgcuggccugcgccgcacccccacucgccggcugguccagguacaucccc gagggccugcagugcucguguggaaucgacuacuacacgcucaagccggagggucaacaac gagucuuuugucaucuacauguucgugguccacuucaccauccccaugauuaucaucuuu uucugcuaugggcagcucgucuucaccgucaaggaggccgcugcccagcagcaggaguca gccaccacacagaaggcagagaaggaggucacccgcauggucaucaucauggucaucgcu uuccugaucugcugggugcccuacgccagcguggcauucuacaucuucacccaccagggc uccaacuucggucccaucuucaugaccaucccagcguucuuugccaagagcgccgccauc uacaacccugucaucuauaucaugaugaacaagcaguuccggaacugcaugcucaccacc aucugcugcggcaagaacccacugggugacgaugaggccucugcuaccguguccaagacg gagacgagccagguggccccggccuaa
摘要:视网膜色素变性是一种遗传性视网膜营养不良症,由于视杆细胞逐渐退化,视锥细胞随后非细胞自主性死亡,最终导致失明。视紫红质是本病中最常见的突变基因。本文利用 CRISPR/Cas9 技术,在两种非洲爪蟾(非洲爪蟾和热带爪蟾)中开发了基于视紫红质基因编辑的视网膜色素变性模型。在这两种蟾蜍中,视紫红质功能的丧失都会导致大量视杆细胞变性,其特征是外节逐渐缩短,偶尔会出现细胞死亡,随后视锥细胞形态恶化。尽管这些退化环境看似相似,但我们发现 Müller 神经胶质细胞在非洲爪蟾和热带爪蟾中的行为不同。虽然非洲爪蟾中相当一部分穆勒细胞重新进入细胞周期,但它们在热带爪蟾中的增殖仍然极其有限。因此,这项研究揭示了近亲物种对视网膜损伤的不同反应。这些模型应该有助于我们在未来加深对进化过程中塑造再生的机制的理解,而脊椎动物之间存在巨大差异。
• 感光蛋白;视紫红质 • ChR2 的结构和光循环 • 研究 ChR2 分子机制的方法 • 视网膜的光吸收和光异构化 • 氢键网络重排和通道开放
视紫红质 (RHO) • 一种参与视杆细胞视觉光传导的光敏受体蛋白 • 位于视杆细胞的外节 • 大约 30%(美国和英国)的 adRP 由 RHO 显性突变引起 • 患病率:美国有 7,500 名患者,欧盟和英国有 12,100 名患者 • RHO 基因中发现的 >150 个突变导致 RHO-adRP 1
视网膜色素变性 (RP) 是一组罕见的遗传性退行性眼病,影响着全球多达 150 万人。RP 是由影响视网膜的多个基因突变引起的,导致视力逐渐丧失,最终失明,症状通常在儿童时期显现,目前无法治愈。RP 的特征是双侧视杆感光细胞丧失,随后视锥感光细胞继发丧失,视网膜色素上皮 (RPE) 变性。RHO 介导的常染色体显性 RP 是由编码视紫红质的基因突变引起的,视紫红质是一种光敏 G 蛋白偶联受体,可启动视杆感光细胞中的光转导级联 (Zhen 等人,2023 年)。USH2A 基因突变是常染色体隐性 RP 和 Usher 综合征的主要原因。 USH2A 编码 usherin,这是一种跨膜蛋白,主要在视网膜的感光层、耳蜗的毛细胞和许多组织的基底膜中产生(Li et al. 2022)。
视紫红质 (RHO) • 一种参与视杆细胞视觉光传导的光敏受体蛋白 • 位于视杆细胞的外节 • 大约 30%(美国和英国)的 adRP 由 RHO 显性突变引起 • 患病率:美国有 7,500 名患者,欧盟和英国有 12,100 名患者 • RHO 基因中发现的 >150 个突变导致 RHO-adRP 1
拓扑组织是感觉皮层的一个显著特征,但其功能作用仍存在争议。特别是,在感觉引导行为期间,皮层区域内的活动整合如何依赖于其拓扑结构尚不清楚。在这里,我们训练小鼠在兴奋性神经元中表达通道视紫红质,以追踪在初级体感皮层的拓扑晶须表示上平稳旋转的光刺激条。小鼠学会辨别光条的角度位置以获得奖励。它们不仅会在该区域的光刺激的时空连续性被破坏时失败,而且当显示地图不连续性的皮层区域(例如躯干和腿部)或没有地形图的区域(例如后顶叶皮层)受到光刺激时也会失败。相反,当皮层拓扑连续性能够预测未来的感觉激活时,小鼠会表现出对奖励可用性的预期。这些发现可能有助于在设计皮层神经假体时优化反馈。