血液 - 视网膜屏障(BRB)是一种公认的机制,是视网膜免疫特权的基础。BRB是由与细胞膜结合的抑制分子以及抑制全身免疫反应的局部形成的。最近的研究表明,小胶质细胞通过调节免疫反应来维持视网膜内的免疫特权至关重要。他们通过增强或减少眼部炎症来实现这一目标。此外,视网膜色素上皮(RPE)调节视网膜内免疫细胞的行为,这可以导致小胶质细胞减少炎症并促进免疫学耐受性。为了更好地了解视网膜内免疫过程的生物学,本文回顾了BRB,并讨论了使BRB启用BRB的因素,系统性免疫反应,小胶质细胞,RPE及其相关酶。
微型和轻型摄像头的设计需要光学设计突破才能实现良好的光学性能。受动物眼睛启发的解决方案是最有前途的。视网膜的曲率具有多种优势,例如均匀的强度和没有场曲率,但不使用此功能。此处介绍的工作是球形弯曲整体IR探测器的解决方案。与最先进的方法相比,获得了更高的填充因子,并且没有修改设备制造过程。我们制作了一个带有单个镜头和弯曲的红外镜头的红外摄像头。捕获的图像已经解决良好,并且具有良好的对比度,并且在与平面系统进行比较时,调制传输功能显示出更好的质量。
RM 50.00,用于马来西亚学员/医务人员/护理人员RM 100.00马来西亚专家USD 50.00用于国际代表 div>RM 50.00,用于马来西亚学员/医务人员/护理人员RM 100.00马来西亚专家USD 50.00用于国际代表 div>
遗传性视网膜疾病 (IRD) 是一组异质性罕见眼病,通常由单基因突变引起,被认为是基因治疗的热门靶点。在 RPE65 突变导致的莱伯氏先天性黑蒙的 IRD 基因替代疗法获批后,国际上展开了密集的研究,以确定一系列 IRD 的最佳基因治疗方法,目前许多方法正在进行临床试验。在本综述中,我们探讨了 IRD 带来的治疗挑战,并回顾了可能适用于不同 IRD 突变子集的当前和未来方法。重点放在五种不同的基因治疗方法上,这些方法有可能治疗全谱 IRD:1)使用腺相关病毒(AAV)和非病毒递送载体进行基因替换,2)通过 CRISPR/Cas9 系统进行基因组编辑,3)通过内源性和外源性 ADAR 进行 RNA 编辑,4)使用反义寡核苷酸进行 mRNA 靶向以进行基因敲除和剪接修饰,以及 5)光遗传学方法,旨在通过设计其他视网膜细胞类型使其具有光转导能力来取代天然视网膜光感受器的功能。
视网膜发育和功能受复杂的遗传和基因组机制的控制,对这些过程的破坏会导致严重的视觉障碍和失明。遗传学和基因组学的进步大大增强了我们对视网膜生物学的理解,从而导致了视网膜疾病的新诊断和治疗方法。探索与视网膜疾病发作,开发视网膜模型系统,识别基本基因和遗传网络以及应用基于CRISPR的基因组编辑相关的遗传变异,对于推进这一领域至关重要。为了进一步在这一领域的知识,我们邀请专家撰写研究论文和关键评论,以解决这些关键领域。
诊断测试:RP的诊断依赖于逐渐丧失外周(侧)视觉丧失的文献(带有视觉场围场的测试)以及与视网膜变性相关的眼部(眼)变化的证明。视网膜检查显示,色素变化称为骨香料,光学连贯扫描证实了视网膜变薄。后来在疾病中,可能会发生白内障(眼睛镜片中的阴影)。用电视图(ERG)进行的其他测试(衡量视网膜对光线的电反应)通过评估感光体功能来证实RP的诊断。遗传测试虽然不是诊断RP的必要条件,但有助于获得准确的诊断,并有可能评估将这种疾病从父母转移到子女的风险。有时,实验室测试可用于排除可能看起来像RP或检测与RP相关的疾病的其他疾病。
的目的:使用模式电子图数据来评估一种大型语言模型Claude-3(一种大语言模型)的诊断准确性,并评估了病理特征和色素性视网膜炎和锥体杆状营养不良的诊断。方法:来自健康个体的模式电子模拟测量的子集,色素性视网膜炎和锥体棒性营养不良的患者是从PERG-IOBA数据集中随机选择的。向Claude-3提供了模式的电视图和临床数据,包括年龄,性别,视力,以进行分析和诊断预测。在两种情况下评估了模型的准确性:“第一选择”,评估了主要差异诊断的准确性和“前三名”,评估了是否包含在前三名鉴别诊断中的正确诊断。结果:研究中总共包括46名受试者:20个健康个体,13例色素性视网膜炎患者,13例锥体-ROD营养不良患者。Claude-3在检测病理学的存在或不存在时达到了100%的准确性。在“第一选择”方案中,该模型在诊断色素性视网膜炎(61.5%)和锥体棒性营养不良(53.8%)方面表现出适度的准确性。然而,在“前3个”方案中,该模型的性能显着提高,色素性视网膜炎的精度为92.3%,锥体-ROD营养不良症的精度为76.9%。结论:这是第一个证明大语言模型,特别是Claude-3的潜力的研究,分析模式电子模拟数据以诊断视网膜疾病。未来的研究应集中于整合多模式数据,并与人类专家进行比较分析。尽管有一些局限性,但该模型在检测病理学和区分特定疾病方面的高精度突出了大语言模型在眼生理学中的潜力。关键词:色素性视网膜炎,锥杆营养不良,模式电子图,大语言模型
甲状腺激素 (TH) 稳态失调与急性和长期疾病的预后不良有关,但其在糖尿病视网膜病变 (DR) 中的作用尚未被研究过。在这里,我们表征了 db/db 小鼠视网膜中的 TH 系统并强调了 MIO-M1 细胞中的调节过程。在 db/db 视网膜中,DR 的典型功能特征和分子特征与组织限制性的 TH 水平降低相伴而生。还证实了局部低 T3 (LT3S) 状况,这可能是由脱碘酶 3 (DIO3) 上调以及 DIO2 和 TH 受体表达降低引起的。同时,T3 反应基因,包括线粒体标志物和微小 RNA(miR-133-3p、338-3p 和 29c-3p),被下调。在 MIO- M1 细胞中,存在反馈调节回路,其中 miR-133-3p 以 T3 依赖的方式触发 DIO3 的转录后抑制,而高葡萄糖 (HG) 通过核因子红细胞 2 相关因子 2 - 缺氧诱导因子 1 途径导致 DIO3 上调。最后,体外模拟早期 LT3S 和高血糖状态与线粒体功能和应激反应标志物减少相关,而 T3 替代可逆转这一情况。总之,数据表明,在 DR 的早期阶段,DIO3 驱动的 LT3S 可能对视网膜应激有保护作用,而在慢性期,它不仅无法限制 HG 引起的损伤,而且还可能由于持续的线粒体功能障碍而增加细胞脆弱性。
抽象的原发性纤毛是从细胞膜延伸的感觉细胞器,并且在各种细胞类型中发现。纤毛具有大量的重要组成部分,可以检测和传播几种信号通路,包括Wnt和SHH。反过来,纤毛生成和纤毛长度的调节受各种因素的影响,包括自噬,肌动蛋白细胞骨架的组织以及纤毛内部的信号传导。不规则性导致一系列称为纤毛病的临床表现。大多数纤毛病患者的视网膜变性率很高。最常见的理论是,视网膜变性主要是由视网膜感受器中的功能和发育问题引起的。迄今为止尚未探索其他纤毛视网膜细胞类型对视网膜变性的贡献。在这篇综述中,我们研究了各种视网膜细胞类型中原发性纤毛的发生及其在病理学中的特征。此外,我们探讨了针对纤毛病的潜在治疗方法。通过参与这项工作,我们提出了新的想法,这些思想阐明了创新的概念,以对视网膜纤毛病的未来研究和治疗。关键词视网膜纤毛病,视网膜炎色素炎,视网膜营养不良,光感受器,RGC细胞,遗传失明