实现强大而实时的3D感知是自动驾驶汽车的基础。虽然大多数现有的3D感知方法优先考虑检测准确性,但十个忽略了关键方面,例如计算效率,板载芯片部署友好性,对传感器安装偏差的韧性以及对各种VE-HILE类型的适应性。为了应对这些挑战,我们提出了nvautonet:一种专业的鸟类视图(BEV)感知网络 - 针对自动化车辆的明确量身定制。nvautonet将同步的相机图像作为输入,并预测3D信号(例如障碍物,自由空间和停车位)。NVAUTONET架构(图像和Bev Back-bones)的核心依赖于有效的卷积网络,该网络使用Tensorrt优化了高性能。我们的图像到BEV转换采用简单的线性层和BEV查找表,从而确保了快速推理速度。Nvautonet在广泛的专有数据集中受过培训,在NVIDIA DRIVE ORIN SOC上以每秒53帧的速度运行,始终达到升高的感知精度。值得注意的是,Nvautonet表现出对不同汽车模型产生的偏差偏差的韧性。此外,Nvautonet在适应各种车辆类型方面表现出色,这是通过廉价模型的微调程序来促进的,可以加快兼容性调整。
摘要 本研究的目的是研究电脑游戏(益智游戏 Moument Valley 和模拟游戏 SimCity)对患有特定学习障碍(阅读、写作、数学)学生的工作记忆和空间视觉感知的影响。本研究的调查是半实验研究,前测和后测采用单组,统计方法为混合方差分析。统计人群是德黑兰复活四所女孩 Maad 小学三年级、四年级、五年级、六年级的全部 216 名学生,其中 10 人通过随机抽样和可用抽样进行测量。为了收集信息,使用了(Susan pickering 工作记忆测试、Visconsin 卡片分类测试和 Frostig 测试)。结果表明,特定学习障碍(阅读、写作、数学)学生与正常学生在工作记忆和空间视知觉等方面存在差异,而电脑游戏(益智游戏 Moument Valley 和模拟游戏 SimCity)对特定学习障碍(阅读、写作、数学)学生的工作记忆和空间视知觉有影响。 关键词:工作记忆 空间视知觉 学习障碍 电脑游戏 引言 特定学习障碍是指一组异质性障碍,其特征是在言语、阅读、写作、答题或数学技能的习得和使用上存在显著差异。学习障碍是一种在使用口头或书面语言方面存在一种或多种显著障碍,在听、想、说、读、写、拼写或进行数学计算的能力上存在缺陷。特定学习障碍是一种影响儿童接收、处理、分析或存储信息能力的问题。这种障碍会使儿童难以阅读、写作、拼写或解决数学问题 [1]。学生特定学习障碍的主要特征包括:自然智力水平、学习成绩低于预期、学习速度慢、认知发展、教育基础重复、学习水平差异、不同学习、课程学习。能力和技能之间存在显著差异,注意力范围狭窄[2]。换句话说,他们尽管智力正常,却无法学习,虽然成长的各个方面与生物成熟度有直接关系,但一般认为生物和非生物因素都可以发挥作用[3]。人类的学习工具随着环境而变化。如果今天的儿童和青少年
上午11:30 - 下午12:30 │2025年2月21日(星期五)CPD1.24,1/f,Run Run Shaw Tower│Centennial Campus│香港大学抽象视觉感知学习(VPL)可以通过培训来增强任务性能,有时通过培训提高了准确性,从近乎机会到熟练程度。 鉴于其在优化视觉和认知功能中的关键作用,因此了解通过学习的看法如何变化至关重要。 然而,人类学习是一个动态过程,涉及一般学习,遗忘,快速重新学习和适应,由于许多研究中使用的粗糙时间分析,通常会忽略它们。 本谈话从大规模的多任务VPL研究中介绍了发现,揭示了特定于主题的一般学习能力,会议内和间隔过程以及任务之间的干扰效应。 为了更好地分析这些学习动力学,我们使用非参数和分层贝叶斯模型介绍了新的数据分析方法,从而为人类学习行为提供了细粒度的见解。 此外,新的计算建模技术允许对生成过程模型进行逐审拟合,从而通过最小的培训数据可以预测学习性能。 这些进步为优化培训策略和改善人类绩效提供了基础。 演讲将以未来的研究方向结束,包括精炼生成模型,探索组件学习过程对经典感知学习操作的影响,并开发一个全面的框架来增强学习概括和效率。上午11:30 - 下午12:30 │2025年2月21日(星期五)CPD1.24,1/f,Run Run Shaw Tower│Centennial Campus│香港大学抽象视觉感知学习(VPL)可以通过培训来增强任务性能,有时通过培训提高了准确性,从近乎机会到熟练程度。鉴于其在优化视觉和认知功能中的关键作用,因此了解通过学习的看法如何变化至关重要。然而,人类学习是一个动态过程,涉及一般学习,遗忘,快速重新学习和适应,由于许多研究中使用的粗糙时间分析,通常会忽略它们。本谈话从大规模的多任务VPL研究中介绍了发现,揭示了特定于主题的一般学习能力,会议内和间隔过程以及任务之间的干扰效应。为了更好地分析这些学习动力学,我们使用非参数和分层贝叶斯模型介绍了新的数据分析方法,从而为人类学习行为提供了细粒度的见解。此外,新的计算建模技术允许对生成过程模型进行逐审拟合,从而通过最小的培训数据可以预测学习性能。这些进步为优化培训策略和改善人类绩效提供了基础。演讲将以未来的研究方向结束,包括精炼生成模型,探索组件学习过程对经典感知学习操作的影响,并开发一个全面的框架来增强学习概括和效率。关于发言人Lu Zhong-lin教授是NYU上海的神经科学教授,也是纽约大学神经科学中心的全球网络教授。Lu教授于2019年加入俄亥俄州立大学的纽约大学,在那里他是艺术与科学学院杰出心理学教授,心理学,验光学和转化数据分析教授,以及认知和脑科学中心,以及认知和行为脑智慧中心的中心。lu是实验心理学家和心理科学协会的会员。Zoom会议(对于无法亲自参加研讨会的参与者)
本文根据图像处理技术介绍了一种新的能源车辆驾驶控制系统。通过处理和分析道路图像,新的能源驾驶控制系统能够识别道路元素,计划路线并计算其方向和速度参数。为了改善系统在各种环境中的适用性,它首先将道路图像分为两类:路面和其他物体。然后,它使用手动迭代方法来确定最佳阈值,并建议一种自适应阈值改进方法。第二,该系统将进行道路元素的特征提取,包括样本类型,例如坡道,直路,曲线,十字路口和障碍物。通过辅助特征提取和样品类型表征,系统实现了各种道路元素的识别和分类。最终,系统执行了图像捕获,预处理和边界提取。然后使用路径计划和道路中心线拟合来实现车辆导航。该技术确定了角参数,并在车辆方向和速度参数测试期间提供了车辆的精确导航方向。新能量汽车的驾驶控制系统非常适用且实用,为这些车辆在复杂的道路条件下安全运行提供了有效的技术援助。
2 Kahneman(2011):“现在您已经测量了线条,您 - 您的系统2,有意识的是您称为'我 - 有一个新的信念:您知道行是平等的[…],但您仍然将底线视为更长的底线。您选择相信测量值,但您不能阻止系统1做事;尽管您知道它们是平等的,但您不能决定将线路视为平等。要抵制幻觉[…],您必须学会不信任鳍时对线条的印象。要实施该规则,您必须能够识别虚幻的模式并回忆您对此的了解。如果您可以做到这一点,那么您将永远不会被穆勒 - 莱er幻觉所欺骗。,但是您仍然会认为一行比另一行更长。”
本文根据构成理性理论提出了行人交叉决策的模型。假定交叉决策是最佳的,其最佳性是由人类认知限制引起的。虽然先前的行人行为模型是“黑盒”机器学习模型,也可以是具有对认知因素的明确假设的机械模型,但我们结合了这两种方法。具体来说,我们在机械上对人类的视觉感知和模型奖励进行了机械模型,考虑到人类的限制,但是我们使用强化学习来学习有限的最佳行为政策。该模型比以前的模型重现了更多的已知经验现象,特别是:(1)接近车辆到达时间对行人是否接受差距,车辆速度对(2)间隙接受的影响(2)(2)(3)交叉车辆前(4)交叉效果的行人的行人时机的影响。值得注意的是,我们的发现表明,以前在决策中以“偏见”(例如依赖速度依赖性差距接受)的行为可能是理性适应视觉感知约束的产物。我们的方法还允许拟合认知约束的参数和每个人的奖励,以更好地说明个体差异,从而与实验数据实现良好的定量对齐。得出结论,通过利用RL和机械建模,我们的模型为行人行为提供了新的见解,并可以为更准确,更可扩展的行人模型提供有用的基础。
亮点:(1)建立了由复杂场景中多模式数据融合驱动的智能决策和焊接过程评估。(2)设计了在非结构化环境中的焊接工件和焊接接缝特征的准确识别。
在现代操纵器交互任务中,由于环境的复杂性和不确定性,准确的对象表面建模通常很难实现。因此,改善操纵器与环境之间相互作用的适应性和稳定性已成为相互作用任务的重点之一。针对操纵器的互动任务,本文旨在在视觉指导下实现良好的力量控制。因此,基于Mujoco(带有触点的多关节动力学)物理引擎,我们为操纵器构建了交互式仿真环境,并创新地集成了基于位置的视觉伺服控制和录取控制。通过深度强化学习(DRL)中的近端策略优化(PPO)算法,有效地集成了视觉信息和力量信息,并提出了结合视觉感知的接收性控制策略。通过比较实验,将允许控制与视觉感知相结合,并将力控制的整体性能提高了68.75%。与经典的入学控制相比,峰值控制精度提高了15%。 实验结果表明,在平坦和不规则的凹面环境中,允许控制与视觉感知结合表现良好:它不仅可以准确地执行视觉构成的力控制任务,而且还可以在各种接触表面上维持施工力,并迅速适应环境变化。与经典的入学控制相比,峰值控制精度提高了15%。实验结果表明,在平坦和不规则的凹面环境中,允许控制与视觉感知结合表现良好:它不仅可以准确地执行视觉构成的力控制任务,而且还可以在各种接触表面上维持施工力,并迅速适应环境变化。在精确组装,医疗援助和服务操纵器的领域中,它可以提高操纵器在复杂和不确定的环境中的适应能力和稳定性,从而促进智能操纵器的自主操作的发展。
为了研究LVLMS和人类之间的感知差距,我们引入了MVP-Bench,这是第一个视觉语言基准系统地评估LVLMS的低水平和高级视觉感知。我们在自然图像和合成图像上结构MVP基础,以研究操纵的结合如何影响模型感知。使用MVP-Bench,我们诊断了10个开源的视觉感知和2个封闭源LVLM,表明高级感知任务显着挑战了现有的LVLM。“ gpt-4O”状态仅在“是/否”问题上仅能达到56%的准确性,而低水平场景中的准确性为74%。此外,自然图像和操纵图像之间的性能差距表明,当前的LVLM并不像人类那样理解合成图像的视觉语义。我们的数据和代码可在https://github.com/guanzhenli/mvp-bench上公开获取。
计算机视觉的最新进展已大大改变了各种行业,从医疗保健到自动驾驶。本文对这些发展进行了全面的调查,特别关注基于深度学习和基于变压器的模型。我们探讨了基本概念和方法,包括特征提取,分类,细分和对象检测。本文还强调了计算机视觉框架和工具的演变,强调了卷积神经网络(CNN),生成模型和转移学习的贡献。补充 - 我们讨论了新兴趋势,例如视觉变形金刚和多模式学习,同时承认诸如数据稀缺和实时处理之类的持续挑战。通过深入分析,我们旨在为学者和专业人员提供对计算机视觉的当前状态和未来前景的详细了解。本文进一步研究了医疗保健,自动驾驶汽车,零售,农业和安全方面的特定应用,以说明计算机视觉技术如何重新定义既定实践并增强决策能力。