等人报告称,呼吸频率是响应身体内部问题而首先发生变化的生命体征之一。[6] 尽管呼吸频率具有临床重要性,但呼吸频率仍然是监测最少的生命体征之一,通常依赖于医疗专业人员不频繁的视觉评估(即定期观察患者胸部的运动)。[7] 视觉测量容易出错,特别是当患者意识到他们的呼吸正在受到监测时,不频繁的测量可能会错过与呼吸模式有关的重要事件。[8,9] 监测呼吸活动(例如呼吸频率)对动物和人类同样重要,甚至更重要;因为动物无法传达疼痛或不适。[10] 研究表明,呼吸(即模式、速率和深度)的变化可能表明狗的身体或情绪压力、心脏、呼吸和其他健康相关问题(包括中暑)。 [11] 对于某些动物,例如狗,由人类手动测量或在陌生环境中测量呼吸活动也可能因情绪因素而导致测量不可靠,从而导致不良的临床决策和结果。 [12] 在包括麻醉在内的各种程序中,监测实验动物(如大鼠)的呼吸也同样重要,但现有的仪器价格昂贵且不精确。 [13]
在弯路上驾驶时执行次要任务(或与驾驶无关的任务)可能存在风险且不安全。本研究的目的是探索是否可以使用多种眼球运动测量方法来评估弯路和次要任务情况下的驾驶安全性。除了典型的静态视觉测量(例如扫视频率和持续时间)之外,我们还采用了基于马尔可夫的转换算法(转换/平稳概率、熵)来量化驾驶员的动态眼球运动模式。这些算法的评估基于一项实验(Jeong & Liu,2019)的数据,该实验涉及多种道路曲率和刺激-反应次要任务类型。在较陡的弯道中,驾驶员更有可能长时间扫描少数感兴趣的区域。在实验中,不太陡的弯道中总的低头扫视时间更长,但从长远来看,较陡的弯道中低头扫视的概率更高。感兴趣区域之间的可靠转换次数因次要任务类型而异。视觉要求不高的任务的视觉扫描模式与视觉要求高的任务一样随机。与典型的静态测量相比,基于马尔可夫的动态眼球运动测量可以更好地了解驾驶员的潜在心理过程和扫描策略。所提出的方法和结果可用于车载系统设计和进一步分析交通领域的视觉扫描模式。
在弯路上驾驶时执行次要任务(或与驾驶无关的任务)可能存在风险且不安全。本研究的目的是探索是否可以使用多种眼球运动测量方法来评估弯路和次要任务情况下的驾驶安全性。除了典型的静态视觉测量(例如扫视频率和持续时间)之外,我们还采用了基于马尔可夫的转换算法(转换/平稳概率、熵)来量化驾驶员的动态眼球运动模式。这些算法的评估基于一项实验(Jeong & Liu,2019),该实验涉及多种道路曲率和刺激-反应次要任务类型。在较陡的弯道中,驾驶员更有可能长时间扫描少数感兴趣的区域。在实验中,不太陡的弯道中总的低头扫视时间更长,但从长远来看,较陡的弯道中低头扫视的概率更高。感兴趣区域之间的可靠转换次数因次要任务类型而异。视觉要求不高的任务的视觉扫描模式与视觉要求高的任务一样随机。与典型的静态测量相比,基于马尔可夫的动态眼球运动测量提供了更好的洞察力,可以更好地了解驾驶员的潜在心理过程和扫描策略。所提出的方法和结果可用于车载系统设计和进一步分析交通中的视觉扫描模式
如今,民用飞机借助外部技术实现自动着陆。最常用的系统称为 ILS(仪表着陆系统),它允许飞机在无需飞行员操作(监控除外)的情况下着陆。其他定位解决方案包括差分 GPS、IRS(惯性参考系统)或 VOR/DME(甚高频全向测距/距离测量设备)。这些技术并非随处可用(未配备或未知的机场)且并非随时可用(存在故障概率)。为了应对这些问题(获得精确的绝对位置)并扩大自动着陆覆盖范围,将研究使用摄像机作为附加信息源。在过去十年中,摄像机技术取得了技术飞跃,因此为每架飞机配备摄像机似乎既简单又便宜。视觉伺服包括使用视觉传感器和计算机视觉算法来控制系统的运动(参见 [1] 中的教程)。第一类控制称为 PBVS(基于姿势的视觉伺服),包括使用视觉测量来估计相机的偏差或方向。第二类控制称为 IBVS(基于图像的视觉伺服),包括控制图像平面中视觉特征的坐标。过去十年来,人们一直在研究用于飞机自动着陆的 IBVS 解决方案;在 [2][3][4][5][6] 中,提出了制导解决方案,以达到并跟踪所需的进近轨迹。尽管如此,这些方案需要开发具有完整链的新制导律(由图像捕获、图像处理和非线性制导算法组成),这可能难以认证
测量方法。具体而言,可以根据压力传感器(压力传感器)获取的压力历史来计算爆震波的传播速度,或者记录自发光现象的高速视频以定位燃烧现象。除此之外,还需要获得RDRE内部爆震波本身的形状、燃料/氧化剂气体混合物的干涉模式等信息,这些信息无法使用常规方法确定,但却极其重要RDRE 的实际应用需要定量可视化测量。被称为纹影法和阴影图法的方法广泛用于可视化和测量流动,但为了获得定量信息,更适合采用可以测量干涉条纹的干涉测量法。在一般的干涉仪方法中,将从作为光源的激光器发射的激光束用作“物光束”(获取有关目标现象的信息)和“参考光束”(穿过目标现象并充当目标现象的信息)。产生干涉条纹的参考)。物体光传播与物体光相同的光路长度。此外,只有物光被引导到测量部分,参考光不允许出现任何现象,而是在成像装置之前重新集成为单光束,并且两束激光束处于同一位置。光路,产生干涉条纹并记录在设备上。如上所述,干涉仪法的光学系统通常比较复杂。另一方面,对于本研究中的测量目标RDRE来说,以双筒内传播的爆震波为测量目标,RDRE燃烧实验场地是一个开放空间,没有实验的辅助设备。考虑到该区域周围物体较多,且没有足够的空间安装光学系统,因此确定使用一般干涉仪进行视觉测量会很困难。 因此,在本研究中,我们确定“点衍射干涉仪”是合适的,它被归类为干涉测量方法中的“共光路干涉仪”,并且在成像装置之前分离物光束和参考光束。针对发动机燃烧实验,我们设计并制作了适用的点衍射干涉仪光学系统,并将其应用于RDRE燃烧实验。实现了以下目标。