对机器任务的深视频压缩(DVC)的事先研究通常需要为每个特定任务培训一个独特的编解码器,从而规定每个任务的专用解码器。相比之下,传统视频编解码器采用了flex ible编码器控制器,从而通过模式预测等机制使Single编解码器适应了不同的任务。从中汲取灵感,我们引入了一个创新的编码器控制器,以用于机器的深度视频压缩。此控制器具有模式预测和一组图片(GOP)选择模块。我们的AP-ARACH在编码阶段集中控制控制,从而允许跨不同任务(例如检测和跟踪)进行适应性的编码器调整,同时与标准的预训练的DVC解码器保持合理性。示例证明我们的方法是在具有各种现有预训练的DVC的多个任务中适用的。此外,广泛的实验表明,对于不同的任务,我们的方法比以前的DVC比以前的DVC大约25%,只有一个预先训练的解码器。
P-D-08研究摘要用于医学图像分割的黑盒改编Jay Nitin Paranjape; Shameema Sikder,医学博士,FACS; S. Swaroop Vedula,MBBS,博士,MPH;以及马里兰州巴尔的摩的Vishal M. Patel Johns Hopkins大学;约翰·霍普金斯大学医学院,马里兰州巴尔的摩简介:大型基础模型在一般计算机视觉任务中具有先进的图像细分,但是由于接受了非医疗数据培训,它们在医学图像细分方面经常表现不佳。当前用于将这些模型调整为医疗任务的方法通常假设对模型参数完全访问,这并不总是可行的,因为许多模型仅作为API或黑框可用。此外,对此类模型进行微调可能是计算密集的,并且隐私问题限制了与第三方共享医疗数据。方法:为了解决这些挑战,我们提出了BAPS(用于促进分割的黑盒改编),这是一种新型技术,旨在在黑盒条件下适应医疗图像分割中的基础模型。BAPS由两个组成部分组成:一个图像促销解码器(IP解码器),该解码器(IP解码器)从输入映像和提示中生成视觉提示,以及零订单优化(Zoo)方法,SPSA-GC,该方法可更新IP解码器,而无需通过基础模型进行回音。此方法允许在不了解模型的权重或梯度的情况下进行适应,因此它非常适合黑色盒子方案。结果:BAPS以四种不同的医学成像方式进行了测试,表明原始基础模型的性能大约提高了4%。公开可用的BAPS代码。实现了这种改进,而没有与基础模型的内部参数进行任何直接相互作用,从而突出了我们的黑盒适应方法的有效性。结论:BAPS为将基础模型调整为医学图像分割提供了创新的解决方案,尤其是在模型参数无法访问时。通过将图像推出解码器与零订单优化方法相结合,BAP可以有效地提高分割性能,而无需访问模型的内部结构。这种方法解决了计算和隐私方面的关键挑战,为在医学成像中应用基础模型提供了新的途径。
在人机界面中,解码器校准对于实现与机器的有效无缝交互至关重要。然而,由于解码器离线预测能力通常并不意味着易于使用,因此重新校准通常是必要的,这是因为在校准过程中无法考虑闭环动态和用户适应性。在这里,我们提出了一种自适应界面,它利用迭代训练的非线性自动编码器来执行在线流形识别和跟踪,其双重目标是减少界面重新校准的需要并提高人机联合性能。重要的是,所提出的方法避免中断设备的操作,它既不依赖于有关任务状态的信息,也不依赖于稳定的神经或运动流形的存在,因此可以在界面操作的最早阶段应用它,此时新神经策略的形成仍在进行中。为了更直接地测试我们算法的性能,我们将自动编码器潜在空间定义为身体-机器界面的控制空间。在初始离线参数调整之后,我们评估了自适应接口与静态解码器在近似用户同时学习在潜在空间内执行伸展动作的不断发展的低维流形方面的表现。结果表明,自适应方法提高了接口解码器的表征效率。同时,它显著提高了用户的任务相关表现,表明在线共同适应过程鼓励开发更准确的内部模型。© 2021 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可 (http://creativecommons.org/licenses/by-nc-nd/4.0/) 开放获取的文章。
图2:NNME的神经网络结构。输入为w和y,输出是估计的回归函数f✓(x)。左绿色块是一个编码器,它由几个具有Relu激活函数的完全连接的层组成,最后一层具有线性函数;编码器的输出是提案分布的参数。右绿色块是一个解码器,它的网络结构与编码器相同;输入是x的随机样本,输出是f✓(x)的估计值。顶部的绿色块是另一个解码器,它由标准化流量的几个耦合层组成;输入是x的随机样品,输出是估计的x的先前密度。
脑机接口 (BCI) 解码器假设神经活动受到约束,这些约束既能反映科学信念,又能产生可处理的计算。最近的科学进展表明,神经活动的真正约束,尤其是其几何形状,可能与大多数解码器所假设的约束大不相同。我们设计了一个解码器 MINT,以接受可能更合适的统计约束。如果这些约束是准确的,MINT 应该优于明确做出不同假设的标准方法。此外,MINT 应该与可以隐式地从数据中学习约束的表达性机器学习方法相媲美。MINT 在各项任务中表现良好,表明其假设与数据非常匹配。在我们进行的每项比较中,MINT 都优于其他可解释方法。在 42 次比较中,MINT 在 37 次中优于表达性机器学习方法。MINT 的计算简单,随着神经元数量的增加而扩展,并产生可解释的数量,例如数据可能性。 MINT 的性能和简单性表明它可能是许多 BCI 应用的有力候选者。24
量子纠错码 (QECC) 是实现量子计算潜力的关键组件。与经典纠错码 (ECC) 一样,QECC 通过将量子逻辑信息分布在冗余物理量子比特上,从而可以检测和纠正错误,从而能够降低错误率。在这项工作中,我们高效地训练了新型端到端深度量子错误解码器。我们通过增强综合征解码来解决量子测量崩溃问题,以预测系统噪声的初始估计值,然后通过深度神经网络对其进行迭代细化。通过可微分目标直接优化在有限域上计算出的逻辑错误率,从而能够在代码施加的约束下实现高效解码。最后,通过高效解码重复综合征采样,我们的架构得到扩展,以支持有故障的综合征测量。所提出的方法展示了神经解码器用于 QECC 的强大功能,它实现了最先进的精度,对于小距离拓扑码,其性能优于现有的端到端神经和经典解码器,而后者通常在计算上是无法实现的。
患有大脑或脊髓相关瘫痪的人通常需要依靠他人来完成基本任务,这限制了他们的独立性。一种潜在的解决方案是脑机接口 (BMI),它可以让他们通过将大脑活动解码为运动命令来自愿控制外部设备(例如机械臂)。在过去十年中,深度学习解码器在大多数 BMI 应用中都取得了最先进的成果,从语音生成到手指控制。然而,深度学习解码器的“黑匣子”性质可能会导致意外行为,从而在现实世界的物理控制场景中造成重大安全隐患。在这些应用中,可解释但性能较低的解码器(例如卡尔曼滤波器 (KF))仍然是常态。在这项研究中,我们设计了一个基于 KalmanNet 的 BMI 解码器,KalmanNet 是 KF 的扩展,它使用循环神经网络来增强其操作以计算卡尔曼增益。这会导致在输入和动态之间变化的“信任”。我们使用该算法根据两只猴子的大脑活动来预测手指运动。我们将离线(预先记录的数据,n = 13 天)和在线(实时预测,n = 5 天)的 KalmanNet 结果与简单的 KF 和两种具有最先进结果的最新深度学习算法进行了比较:tcFNN 和 LSTM。KalmanNet 在离线和在线模式下取得了与其他深度学习模型相当或更好的结果,依靠动态模型来停止,而更多地依靠神经输入来启动运动。我们通过实施使用相同策略的异方差 KF 进一步验证了这一机制,并且它也接近最先进的性能,同时仍在标准 KF 的可解释范围内。然而,我们也看到了 KalmanNet 的两个缺点。KalmanNet 与现有的深度学习解码器一样具有有限的泛化能力,并且它使用 KF 作为归纳偏差在存在看不见的噪声分布的情况下限制了其性能。尽管存在这种权衡,我们的分析成功地整合了传统控制和现代深度学习方法,以激发高性能且仍可解释的 BMI 设计。
编码器-解码器网络在分层特征融合方面表现优异,常用于医学图像分割。然而,特征解码和空间恢复的扩展路径在融合不同层的特征图时没有考虑长期依赖性,并且通用编码器-解码器网络没有充分利用多模态信息来提高网络鲁棒性,尤其是对于医学MRI的分割。在本文中,我们提出了一种称为循环解码单元(RDC)的新型特征融合单元,它利用卷积RNN在解码阶段记忆来自前几层的长期上下文信息。我们还基于RDC提出了一种用于分割多模态医学MRI的编码器-解码器网络,称为卷积循环解码网络(CRDN)。CRDN采用CNN主干对图像特征进行编码,并通过一系列RDC对其进行分层解码以获得最终的高分辨率分数图。在 BrainWeb、MRBrainS 和 HVSMR 数据集上的评估实验表明,RDC 的引入有效地提高了分割精度并减小了模型尺寸,并且提出的 CRDN 对医学 MRI 中的图像噪声和强度非均匀性具有很强的鲁棒性。