考纳斯理工大学 K. Donelaicio 街 73 号,LT-44029,考纳斯,立陶宛 电子邮件:viktorija.varaniute@ktu.lt;ineta.zickute@ktu.lt;giedre.vecerskiene@ktu.lt;grazvidas.zaukas@ktu.lt * 通讯作者 https://doi.org/10.5755/j01.ee.34.5.35001 现有文献强调绩效管理作为提高任何公司竞争优势的重要组成部分的重要性。公司可以根据各种工具进行绩效管理。在当今的循环经济中,管理公司绩效(不仅从财务角度而且从环境角度)已成为一项战略决策。事实上,循环经济战略绩效管理的研究方向多种多样且相当分散。本文旨在提出一个平衡记分卡方法下的绩效管理框架,供循环经济战略实施参考。采用文献计量法揭示了绩效管理和循环经济战略研究的主要方向。结果显示,在平衡记分卡方法下,循环经济战略实施中需要考虑的绩效管理指标多种多样。关键词:循环经济;循环经济战略;平衡记分卡;绩效管理;指标。
瞳孔大小的变化与大脑活动模式的变化有关,与特定的认知因素有关,例如唤醒,注意力和精神努力。基因座(LC)是大脑去甲肾上腺素能系统中的关键枢纽,被认为是对学生大小的认知控制的关键调节剂,瞳孔直径的变化与去甲肾上腺素(NE)的释放相对应。目光跟踪技术和开源软件的进步已促进了各种实验环境中准确的学生大小测量,从而增加了对使用瞳孔计量法来跟踪神经系统激活状态的兴趣,并作为脑疾病的潜在生物标志物。本评论探讨了瞳孔测定法作为一种非侵入性和完全翻译的工具,用于研究皮质可塑性,从最近的文献开始,这表明羽毛状测定法可能是估计人类受试者残留可塑性程度的有希望的技术。鉴于NE被称为皮质可塑性和唤醒的关键介体,因此综述包括数据揭示了LC-NE系统在调节脑可塑性和瞳孔大小中的重要性。最后,我们将回顾一下数据,表明瞳孔测定法可以在临床前研究中提供对皮质可塑性的定量和互补度量。
本研究旨在确定当前使用人工智能 (AI) 方法解决航运问题的方法。正在研究人工智能的最新进展,并回顾其适应海运物流的方式。在本研究中,通过文献计量法审查了 66 篇有关海运业人工智能的论文。研究数据主要来自 IEEE Xplore、Web of Science、ScienceDirect (Elsevier)、Sciences Citation Index、Google Scholar、Springer 和期刊的数据库。对选定的论文进行分类,并详细讨论了一些值得注意的出版物的成果。还进行了全面评估,突出了研究差距并预测了未来的研究方向。提出了利用人工智能能力在海运业进行进一步研究的两个可能领域。预测分析是第一个领域,其次是能源效率优化。此外,机器学习 (ML) 和运筹学 (OR) 也引起了人们对自动学习启发式方法的兴趣,以解决优化问题,从而避免需要昂贵且低效的人力来创建高度专业化的启发式方法。未来的研究可以利用这些新的 ML 方法来解决海运物流问题,利用不断增加的可用数据量。未来对海运物流的研究还可以根据已发现的差距开发学习模型。
纳米晶薄膜的光吸收可能会受到孔隙率和晶粒尺寸效应的影响。如果两者同时存在,则它们的效果很难分开。在这项研究中,这表明在多孔CEO 2部门对UV-VIS透射率和反射测量的组合提供了足够的数据以使这种分离。首席执行官2纤维是通过纳米化〜的沉积来制备的; 5 nm!从水胶体悬浮液到蓝宝石的颗粒,并将这些膜的颗粒呈现到烧结的温度上,以提供高度高的薄膜,提供典型厚度为0.6 m m的薄膜,具有较高的晶粒尺寸和孔隙率。X射线衍射,扫描电子显微镜,椭圆法和纤维计量法被用来表征膜的表征,并将观察到的晶粒尺寸和孔隙率与从光学测量中获得的孔径进行比较。所有使用的技术都给出了孔隙率和晶粒尺寸的结果,这些孔隙率和晶粒尺寸分别从15%到50%和5至65 nm。对于这些多孔纤维,发现吸收的变化通常由小晶体大小而导致的量子结构效应来解释,这主要归因于孔隙率的变化,而不是晶粒尺寸的变化。©2001美国物理研究所。@ doi:10.1063/1.1389329#
摘要:本研究探讨了先进的仿真和建模技术在优化可再生能源系统性能和可靠性方面的应用。鉴于应对气候变化和减少温室气体排放的迫切需要,将可再生能源整合到现有基础设施中至关重要。使用文献计量法,我们的研究范围从 1979 年到 2023 年,确定了主要出版物、机构和趋势。分析显示,人们对仿真和建模的兴趣年增长率显著提高 16.78%,发表的文章数量显着增加,到 2023 年达到 921 篇。这表明研究活动和兴趣有所增加。我们的研究结果强调,优化、政策框架和能源管理是中心主题。《能源》、《能源》和《应用能源》等领先期刊在传播研究方面发挥着重要作用。主要发现还强调了国际合作的重要性,中国、美国和欧洲国家等国家发挥着重要作用。三字段图分析表明关键词之间存在相互关联,表明“可再生能源”、“优化”和“模拟”等术语是研究话语的核心。中国国家自然科学基金 (NSFC) 和欧盟等核心资助机构大力支持这项研究。这项研究强调了政策和可持续性指标在促进可再生能源技术方面的重要性。这些见解强调了持续创新和跨学科合作的必要性,以实现可持续能源的未来。
许多生物分子冷凝物被认为是通过液体 - 液相分离(LLP)形成的多价大酚 -对于那些通过这种机制形成的人来说,我们的理解受益于关键组成部分和活动的生化重新定义。迄今为止,基于RNA的冷凝物的重组主要是基于相对简单的分子集合。然而,蛋白质组学和测序数据表明,基于天然RNA的浓度富含数百至数千种不同的分量,遗传数据表明多种相互作用可以在不同程度上有助于凝结物的形成。从这个角度来看,我们描述了通过不同水平的生化重构建立基于RNA的冷凝水的最新进展,以此来弥合简单的体外重构和细胞分析之间的间隙。复杂的重组提供了有关多组分冷凝物的形成,调节和功能的洞察力。我们专注于两个RNA - 蛋白质冷凝案例研究:应力颗粒和RNA加工体(Podies),并检查促进LLP的多个组件之间合作相互作用的证据。从这些研究中提出的一个重要概念是,组成和化学计量法调节冷凝水内的生化活性。基于从压力颗粒和p身体中学到的经验教训,我们讨论了了解凝结物成分之间热力学关系的前瞻性方法,其目的是开发组成和材料特性的预测模型及其对生物化活性的影响。我们预计定量重构将有助于理解各种RNA的复杂热力学和功能 - 蛋白质冷凝物。
由于石油原油价格高昂,人们对国内生产生物燃料产生了兴趣,这促使人们考虑用液体来替代或延长传统的石油衍生燃料。虽然乙醇作为汽油增量剂受到了广泛关注,但这种液体存在许多问题,例如对发动机部件的腐蚀性和相对较低的能量含量。由于这些原因和其他原因,丁醇已被研究作为汽油增量剂。对于任何要设计或采用的增量剂,合适的热物理性质知识库都是一个关键要求。在本文中,我们利用先进的蒸馏曲线计量法对典型汽油与正丁醇、2-丁醇、异丁醇和叔丁醇的混合物进行了挥发性测量。这项最近推出的技术是对传统方法的改进,其特点是 (1) 每种馏分都有一个明确的成分数据通道(用于定性和定量分析);(2) 温度测量是可以用状态方程建模的真实热力学状态点;(3) 温度、体积和压力测量具有低不确定度,适合状态方程开发;(4) 与一个世纪的历史数据一致;(5) 评估每种馏分的能量含量;(6) 对每种馏分进行痕量化学分析;(7) 对每种馏分进行腐蚀性评估。我们已将新方法应用于碳氢化合物混合物和共沸混合物的基础工作以及实际燃料。我们测量的燃料包括火箭推进剂、汽油、喷气燃料、柴油(包括含氧柴油和生物柴油)和原油。
摘要:已知半导体电极的表面化学计量法会影响光电化学(PEC)响应。迄今为止,有几份报告暗示了表面BI:V比对Bivo 4 PhotoAnodes太阳能水氧化性能的影响,但仅据报道,只有少数策略能够负担这种表面化学计量,而对表面终止的原子终止作用的全面了解仍然是难以理解的。在此,我们报告了一种新的方法,该方法可以调节表面BI:V比,进而将PEC的性能最大化,朝着氧气进化反应(OER)。我们发现,在存在Metavanatrate铵的情况下退火会大大降低表面重组,同时改善电荷分离。详细的表征表明,这种处理填充了天然表面钒空位,发现该空位充当重组中心,同时诱导了氧气空位密度的显着增加,从而增强了驱动电荷分离的内置电场。有趣的是,用Nifeo X涂层改善,尤其是在表面V-Bivo 4中的电荷分离。结果表明,富含V的表面终止改变了BIVO 4的表面能量,从而导致界面上的带状对齐。总体而言,这些结果提供了一个新的平台,以调节Bivo 4薄膜的表面化学计量法,同时为表面终止控制PEC响应的机制提供新的光。
摘要。土壤是最大的陆生碳池。因此,了解控制土壤碳稳定和释放的过程对于改善我们对全球碳循环的理解至关重要。异营养呼吸是将土壤有机碳返回大气的主要途径。但是,并非所有由het-rotophophs使用的碳都具有这种命运,因为某些部分被保留在土壤中,因为生物量和生物合成的细胞外化合物。用于生物量生长的微生物消耗的碳的比例(碳使用效率或提示)是控制土壤碳库存的重要变量,但很难衡量。在这里我们表明,可以通过测量CO 2和O 2气体浓度来在实验室葡萄糖照射的土壤中继续监测提示,从而允许对微生物生物量生长的瞬时估计。我们得出了呼吸测量(RQ)之间的理论关系,在呼吸过程中产生的二氧化碳与二氧化碳的比率,以及识别底物和生物合成产品牛的影响的提示。假设生物合成的产物具有平均微生物的化学计量法,并且该基础主要是用于修正的葡萄糖,我们可以使用RQ并使用我们的理论关系来计算提示和从该生物量产生的产生。表明,在所有修订的治疗中,静态生物量的净增加最小,这表明这种新生产的生物量的大部分可能被转化为底物可用性,并且在新土壤有机体
从1995年的第一个单一组合CDSE超级晶格开始(图2a),并以1999年的多层Sio 2超级晶格的发现达到顶点(图2B),无机纳米晶体超级晶格的多样性是通过使用良好的良好的良好的良好的方法,可欣赏使用的方法。[13–17]这些具有原子精度的上层建筑继续激励对新型超级晶格的研究。发现CDSE超晶格几乎十年后,多功能超晶格的发展受到平衡纳米级相互作用的困难,例如范德华力,例如范德华力,静电效应,空间排斥力,摩尔的骨骼二波尔相互作用以及氢键。[18]在2002年,Fe 2 O 3纳米晶体和PBSE量子点自组装成具有未经原始的高包装密度的高度有序的3D二元纳米晶体超晶格(图2C)。[15]从那时起,已经利用了15种超过15种类型的二元纳米晶体超级晶格,涵盖了广泛的材料,包括分号,金属和磁性构建块(图2E)。[16]此外,深入的研究证明,二元纳米晶体超级晶格的化学计量法主要由对稳定的纳米晶体的电荷指示,其熵,范德华瓦尔斯,固定剂,固定力和二极管力的贡献较小。在2003年,提出了包装模型来解释超晶格的结构构型并预测可能的布置(图2D)。[19]