1. 引言 人工智能这个主题一直受到各个学科的广泛关注。2022年,随着科技的快速进步,AIGC(人工智能生成内容)的出现不仅导致了各个行业结构的变化,而且还成为不同领域非常有前途的工具。在设计方面,文本到图像人工智能的出现可以通过简单的指令生成相应的图像。此外,它还可以增强视觉交流和创意构思效率(刘等人,2023 年)。因此,已经有多项研究调查了人工智能的使用及其应用(Ploennigs 和 Berger,2022 年;Vartiainen 和 Tedre,2023 年)。然而,设计不仅被视为一门生产作品的学科,而且还被视为一个涉及思考、分析和决策的复杂过程(Kavousi 等人,2020a 年)。在心理学中,我们将其称为“元认知”。它不仅在设计教育和设计构思中发挥着重要作用(Ball and Christensen 2019),创造力的提高也是通过元认知思维的训练过程实现的。因此,本文不讨论人工智能在设计中的应用,而是旨在更深入地了解其对设计领域的影响。
摘要 近年来,研究人员设计了许多具有强大人工智能的共同创造系统,这些系统前景光明,但由于协作和交互质量不佳,有些系统未能吸引用户。大多数现有的共同创造系统采用指导性交互,用户仅通过提供贡献说明与人工智能进行交流。在本文中,我们展示了一个用于设计构思的共同创造系统的原型,即 Creative PenPal,它采用的交互模型包括使用文本的人机对话交互和人工智能角色的虚拟体现。我们假设这种交互模型将提高用户参与度、用户对人工智能的感知以及协作体验。我们描述了研究设计,以调查这种特定的交互模型对用户参与度和整体协作体验的影响。到研讨会时,我们将获得研究数据和见解。
MindSculpt 使用户能够通过思考实时生成 Grasshopper 中的各种混合几何图形。此设计工具将脑机接口 (BCI) 与参数化设计平台 Grasshopper 相结合,创建了一种直观的设计工作流程,与基于鼠标和键盘范式的传统计算机辅助设计工具相比,它缩短了构思和实施之间的延迟。该项目源于神经科学和建筑学之间的跨学科研究,目标是构建一种能够在设计过程中利用复杂且流动的思维特性的网络人类协作工具。MindSculpt 采用基于支持向量机模型 (SVM) 的监督机器学习方法来识别当参与者在脑海中旋转四种不同的立体几何图形时,EEG 数据中出现的脑电波模式。研究人员对没有设计经验的参与者测试了 MindSculpt,发现该工具使用起来很有趣,可以促进设计构思和艺术创作。
最近,生成式机器学习模型的输出质量得到了一定程度的提高,开辟了新的使用途径。这种质量的提高导致了商业生成平台的出现,用户可以在其中创建任意的文本和图像提示,以便快速生成大量图像。这些图像有时用作完成的创意结果,有时用作进一步手动编辑或设计构思的基础。从手动草图到图像编辑器和 3D 渲染,各种传统的可视化方法每天都在建筑设计中使用。建筑师很快就对生成方法产生了兴趣,正如 AEC 杂志 (2022) 的特别版所反映的那样。这项新技术在公众中得到了广泛讨论,从其具体用例到其开发方式的伦理以及它将带来哪些变化。在本文中,我们希望利用 Midjourney 平台的开放性以定量方式分析当前的建筑用例和功能。我们通过多种方法分析了 5800 万个查询,包括 word2vec 等 NLP 方法。我们考虑了这些模型背后的相关技术部分,并将研究它们如何使现在和将来的建筑师受益。图像生成模型的当前技术基础是所谓的扩散方法。Sohl-Dickstein 等人(2015 年)首次引入了正向扩散,它会逐步破坏图像中的结构化信息,而反向扩散则试图重新生成丢失的信息。然而,由于原始图像信息已被破坏,反向扩散至少部分起作用