基因组编辑技术的发展彻底改变了生物医学研究,特别是自从 CRISPR/Cas9(成簇的规律间隔的短回文重复序列/CRISPR 相关蛋白 9)技术引入以来。该系统最初是在细菌免疫反应中发现的 1,随后应用于真核生物基因组编辑 2 – 4。CRISPR/Cas9 系统的简单性使基因组编辑比传统的 DNA 编辑技术更容易获得和更容易。作为一种基因组编辑工具,该系统由两个基本成分组成:一种切割 DNA 链的内切酶 Cas9,以及一种单向导 RNA(sgRNA),其中包含用于识别目标 DNA 区域的特定序列。值得注意的是,细菌中的内源性 Cas9 系统有两种 RNA 成分(CRISPR RNA(crRNA)和反式激活 crRNA); CRISPR/Cas9 工具中的 sgRNA 是由 crRNA 和反式激活 crRNA 人工改造而成。当 Cas9 和 sgRNA 被递送到细胞中时,产生的 Cas9-sgRNA 复合物被导向目标基因组位点,在那里产生 DNA 中的双链断裂 (DSB)。然后通过内源性 DNA 修复机制修复 DSB,从而实现基因敲除或敲入 5 。
Cigna Healthcare 产品和服务由 Cigna Group 的运营子公司独家提供或通过其提供,包括 Cigna Health and Life Insurance Company、Connecticut General Life Insurance Company、Evernorth Behavioral Health, Inc.、Evernorth Care Solutions, Inc. 以及 Cigna Health Corporation 的 HMO 或服务公司子公司,包括 Cigna HealthCare of Arizona, Inc.、Cigna HealthCare of California, Inc.、Cigna HealthCare of Colorado, Inc.、Cigna HealthCare of Connecticut, Inc.、Cigna HealthCare of Florida, Inc.、Cigna HealthCare of Georgia, Inc.、Cigna HealthCare of Illinois, Inc.、Cigna HealthCare of Indiana, Inc.、Cigna HealthCare of St. Louis, Inc.、Cigna HealthCare of North Carolina, Inc.、Cigna HealthCare of New Jersey, Inc.、Cigna HealthCare of South Carolina, Inc.、Cigna HealthCare of Tennessee, Inc. 和 Cigna HealthCare of Texas, Inc. 注意:如果您讲英语以外的语言,语言协助为您提供免费服务。对于当前 Cigna 客户,请拨打您身份证背面的号码。否则,请拨打 1.800.244.6224(TTY:拨打 711)。注意:如果您没有使用英语,请使用免费的语言服务。如果是 Cigna 的实际客户,则将其数字与识别目标相反。如果没有,请拨打 1.800.244.6224(los usuarios de TTY deben llamar al 711)。
操作环境 - 自动无人机俄罗斯乌克兰战争是第一次见证双方无人机的全面冲突。俄罗斯已经尝试了能够自主操作的柳叶刀和Kamikaze无人机,而乌克兰正在使用US-设计的SwitchBlade无人机,这些无人机能够使用算法识别目标。已经观察到了无人机中自主或基于AI的技术的缓慢整合,这实际上只是减少人类控制的软件更改。自主无人机的出现是由于较大的飞行数字构成的,这构成了控制飞行中众多无人机,避免障碍物和这些无人机的精确靶向的挑战。专家现在警告说,无人机的扩散正在推动军队将越来越多的控制权移交给人工智能(AI),并最终朝着可以在战场上运作而无需人类参与的系统。这可能需要一个自主保护循环,因为人类无法在没有AI的情况下防御自主无人机。无人机的自主权在分析无人机中的自主权之前,要理解两个术语 - AI和自动化通常可以互换使用。尽管这两个术语都可以更聪明,更有效地操作,但是这两个术语之间几乎没有概念上的差异。AI和自动化的共同点是数据。自动化设备整理数据时,AI系统对其进行了解释。
摘要 - 本文解决了在实际环境中自主检查中对象目标导航的问题。对象目标导航对于在各种设置中实现有效的检查至关重要,通常要求机器人在大型搜索空间内识别目标对象。当前的对象检查方法没有人为效率,因为它们通常无法像人类那样在事先和常识知识之前引导。在本文中,我们引入了一个框架,该框架使机器人能够使用先前的环境空间配置和语义常识知识的语义知识。我们提出了将语义先验知识与机器人的观察结果相结合的搜索(对象检查任务的语义推理),以更有效地搜索和导航到目标对象。SEEK维持两个表示:动态场景图(DSG)和关系语义网络(RSN)。RSN是一个紧凑而实用的模型,可估计在DSG中的空间元素中找到目标对象的概率。我们提出了一个新颖的概率计划框架,以使用关系语义知识来搜索对象。我们的仿真分析表明,根据对象目标检查任务的效率,在本研究中检查了基于经典计划和大型语言模型(LLMS)的方法。我们在城市环境中验证了对物理机器人的方法,展示了其在现实世界检查场景中的实用性和有效性。
确定化学物质与毒性靶标相互作用的能力,例如不良结局途径中的蛋白质,是药物发现和风险评估的重要步骤。筛选化学毒性目标相互作用的计算方法可以作为传统体外 /体内方法的快速替代方法。在这项工作中,我们开发了一种基于化学相似的方案,该方案可以预测化学物质与64个已建立的毒性靶标相互作用的潜力。特别是,我们从公共数据源创建了一个化学基因组学数据库,以识别目标代表,即已知与所选靶标相互作用的化学物质。我们使用Chembl数据库的外部评估集在正确排名的已知相互作用化合物中评估了2D和3D相似性方法的性能。我们发现2D方法在目标预测中的表现优于3D方法。在这里,我们使用基于2D相似性的筛选方法开发了一种公开可用的毒性profiler网站(https://toxpro.bhsai.org/),该方法允许用户为一组查询化合物获得毒性目标配置文件。我们将探测器用于屏幕649已知的急性和剧毒化学物质,全球统一系统(GHS)得分小于2。在此组中,乙酰胆碱酯酶是毒性的最常见目标。开发的毒性特性工具提供了一种快速筛选化学毒性的机制的方法。
摘要 过去十年,人们在识别用途更广泛的成簇规律间隔短回文重复序列 (CRISPR)/CRISPR 相关蛋白 (Cas) 核酸酶及其功能变体以及开发精确的 CRISPR/Cas 衍生基因组编辑器方面取得了快速发展。基因组编辑器的可编程和强大特性为基础生命科学研究及其在生物医学创新和有针对性的作物改良等不同场景中的后续应用提供了有效的 RNA 引导平台。最重要的原则之一是以预期的方式引导基因组序列或基因的改变,而不会产生不良的脱靶影响,这在很大程度上取决于单向导 RNA (sgRNA) 指导的识别目标 DNA 序列的效率和特异性。经验评分算法和机器学习模型的最新进展促进了 sgRNA 设计和脱靶预测。在本综述中,我们首先简要介绍了 CRISPR/Cas 工具的不同特点,应考虑到这些特点以实现特定目的。其次,我们重点介绍在设计 sgRNA 和分析 CRISPR/Cas 诱导的靶向和脱靶突变中广泛使用的计算机辅助工具和资源。第三,我们对现有计算工具的局限性提供了见解,这将有助于该领域的研究人员进一步优化。最后,我们提出了一个简单但有效的工作流程,用于选择和应用基于网络的 CRISPR/Cas 基因组编辑资源和工具。
摘要 伴随前庭功能障碍的失忆症状表明前庭和视觉记忆系统之间存在功能关系。然而,人们对其背后的认知过程知之甚少。作为起点,我们寻找一种跨模态相互作用的证据,这种相互作用通常在其他感觉模态之间观察到,在这种相互作用中,如果先前将目标(在本例中为视觉)与来自另一个感觉域(在本例中为前庭)的独特、时间上一致的刺激相结合,则更容易识别目标。参与者首先执行视觉检测任务,其中刺激出现在计算机网格内的随机位置。参与者不知道,一种特定刺激的开始伴随着短暂的亚感觉脉冲电前庭刺激 (GVS)。在两个视觉搜索实验中,当在先前检测任务中出现 GVS 配对视觉刺激的网格位置呈现时,旧目标和新目标都能更快地被识别。这种位置优势似乎是基于相对而非绝对空间坐标,因为当搜索网格旋转 90° 时,这种效果仍然有效。这些发现共同表明,当个体回到熟悉的视觉场景(此处为 2D 网格)时,如果目标出现在之前与独特的、与任务无关的前庭线索相关联的位置,则视觉判断会得到促进。这种多感官相互作用的新案例对于理解前庭信号如何影响认知过程具有更广泛的意义,并有助于限制 GVS 日益增长的治疗应用。
外束放射治疗 (EBRT) 使用外部来源的准直 X 射线或伽马射线、电子或质子发射到受影响区域。2 最近的迭代被称为重离子疗法,使用重离子代替电子或质子进行治疗。3,4 这种方法的优点是不需要手术,这可能会使患者的健康复杂化。此外,随着机器的进步,可以非常准确地识别目标细胞,从而可以更准确地输送剂量。另一方面,近距离放射治疗使用放射性物质并将其植入目标细胞附近的密封容器中。该程序适用于特定癌症,例如乳腺癌或前列腺癌,在这些癌症中,将更高剂量应用于集中区域是有利的。这两种治疗方法可以结合起来:通过使用 EBRT 瞄准大癌症肿块,近距离放射治疗将剂量输送到较小的癌症区域,可以提高整体治疗的有效性。内部治疗的另一种形式是放射性核素治疗或非密封源放射治疗。它使用化学和生物化合物与癌细胞结合或利用人体将其吸收到体内的倾向,因此是一种靶向放射治疗。早期的例子是使用放射性碘(131 I)治疗甲状腺癌。5 由于甲状腺会自然吸收碘进行自我调节,因此当摄入 131 I 时,甲状腺会吸收放射性碘,治疗就会顺利进行。
新的基因组编辑程序目前正在迅速发展。这也增加了负责处理相关风险的需求。最有希望,最有希望的程序是CRISPR/CAS系统。基因剪刀CRISPR/CAS的应用非常不同,并且在多阶段过程中运行。组合了各种分子生物学技术,每种都与特定风险相关。当CRISPR/CAS插入细胞和细胞核时,基因组,RNA或蛋白质的不良变化可能在细胞水平上发生。本背景文件概述了使用CRISPR/CAS和较旧的基因工程方法时可能发生的固有风险。此外,还提出了可以广泛检查基因组植物的程序,并可以发现无意的变化。基因组编辑是一个多阶段的过程,可以使用基因剪刀导致无意的变化。在背景文件中详细描述了使用基因剪刀的不同阶段。在第一步中,必须首先将基因剪刀引入蔬菜细胞中。仅在下一步中才形成细胞的基因剪刀,识别目标序列并切割。目前,流派DNA随附有关类型剪刀形成的信息,目前被带入细胞中并安装在遗传材料中。通过旧基因工程的方法(例如基因大炮的颗粒火或农业转化)进行了第一步。第二步是当基因剪刀在细胞中活跃并且目标序列正在寻找和切割时,新基因工程的应用。作为此多阶段过程的风险的一个例子,大米应为使用基因剪刀CRISPR/CAS9来增加收入[1]。展示了自己
CRISPR/CAS系统被发现是一种细菌免疫机制(一种驱除外毒病毒等的机制),而CRISPR/CAS9(近年来一直在世界上使用最广泛的CRISPR/CAS9)来自链球菌为增生链球菌(SPCAS9)。该系统由CAS9,一种裂解双链DNA的酶(内切酶)和一个称为“ Guide RNA(GRNA)”的短RNA分子组成。 GRNA由一个20碱基的序列互补,与位于5'端的目标序列和作为CAS9的支架的序列,当Cas9与脚手架序列结合时,形成了Cas9-grna络合物。为了使CAS9识别目标序列,需要一个称为原始的基序(PAM)的特定序列,将序列与GRNA的5'末端的20个基部互补(在SPCAS9的情况下为NGG),并且需要Cas9-guide RNA与指导rna + p Douplence rebs crement cremence extrent crement crement crements extrest rebists的互补序列的位置结合的位置。 CRISPR/CAS9系统不仅用于切割DNA,而且通过将各种效应子与Cas9蛋白相结合,而CAS9蛋白的DNA裂解活性部分或完全不足,而不需要DNA双链断裂的基因组编辑技术是一个接一个地开发的。 One of these is a technology called Prime editing, in which a fusion protein in which reverse transcriptase is linked to a Cas9 (nickase-type Cas9, nCas9) protein that has partially deficient in DNA cleavage activity and an RNA molecule in which a sequence that forms the template for reverse transcriptase is linked to the 3' end of gRNA, allowing an arbitrary modification to the target gene using RNA as a template.