应用说明 光子数分辨探测器 光子数分辨 (PNR) 探测器可以识别一次探测事件中到达的光子数。到目前为止,基于超导纳米线 (SNSPD) 的单光子探测器只能通过将 SNSPD 的多像素阵列连接到读出电路来分辨光子数,读出电路决定同时点击的像素数。但是,对更多像素的需求增加了系统成本,并且增加了多个光子被同一像素吸收的概率,从而减少了光子数信息。Single Quantum 最近改进了 SNSPD 的定时抖动和恢复时间。这为 PNR 提供了一种不太复杂的解决方案:仅使用一个 SNSPD,就可以通过简单的抖动测量来测量 PNR。 测量设置 同时吸收的光子数会影响 SNSPD 电读出脉冲上升沿的斜率。可以通过将 SNSPD 读出脉冲与脉冲激光源进行时间关联来提取此斜率变化。为进行此测量,使用脉冲宽度为 2.3 ps 且重复率低于 SNSPD 恢复时间 ( f rep < 1/(5 τ ) ) 的 1064 nm 脉冲激光器。脉冲激光器的波长并不重要,但脉冲宽度必须比读出脉冲的上升时间短得多,这目前将此方案限制在基于皮秒激光的实验中。激光输出被分成两根光纤。第一根光纤连接到快速光电二极管,产生起始事件。第二根光纤通过衰减器连接到 SNSPD,以降低光功率,使 SNSPD 平均吸收 μ 个光子。SNSPD 通过时间相关装置与光电二极管相关。我们使用带宽为 4 GHz 的 40 GS/s 示波器来关联 SNSPD 和光电二极管。我们的工程师可以协助您为此类测量选择合适的相关电子设备。
读出结果为长度为 J 的二进制字符串,即 R = [0 , 0 , 1 , 0 , · · · ],其中 0 表示无
快速可靠的响应与现有的内置光电二极管方法形成鲜明对比的是眼部安全保护,其中光电二极管信号容易受到非眼安全性相关因素(例如VCSEL模块前面的反射对象)引起的故障。此外,TARA2000-自动安全的互锁环更易于集成,因为其读出电路仅需要一个和门或MOSFET。相比之下,光电二极管的复杂读出电路需要更高数量的组件,从而导致较高的物质成本,以及对对眼睛安全风险的事件的较慢响应。
用于光子量子比特的长持续时间量子存储器是实现长距离量子网络和中继器的重要组成部分。将光学状态映射到稀土集合中的相干自旋波上是一种特别有前途的量子存储方法。然而,由于所需的自旋波操纵引起的读出噪声,在量子水平上实现长时间存储仍然具有挑战性。在这项工作中,我们应用动态解耦技术和小磁场,在 151 Eu 3 +:Y 2 SiO 5 晶体中实现 20、50 和 100 毫秒的六种时间模式的存储,基于原子频率梳存储器,其中每个时间模式平均包含大约一个光子。通过存储两个时间箱量子比特 20 毫秒来验证存储器的量子相干性,平均存储器输出保真度为 F = (85 ± 2)%,每个量子比特的平均光子数为 μ in = 0.92 ± 0.04。量子比特分析是在存储器读出时完成的,使用我们开发的一种复合绝热读出脉冲。
最简单、最普遍的放大定义可能来自 Clerk 等人。他们指出,“放大涉及使一些与时间相关的信号变大”[1]。在我们更详细地了解放大过程之前,我们先解释一下为什么“使一些与时间相关的信号变大”在电路 QED 中至关重要,以此来激励放大器。在超导电路的读出过程中,信噪比至关重要。除其他因素外,信噪比还会影响需要进行多少次重复测量才能获得清晰的结果,或者是否可以进行单次读出。读出腔的输出可以被视为量子信号,因为传输线的电磁激发仅涉及几个光子 [2]。从这个寒冷的地方到室温下的测量装置,最初已经很弱的信号会进一步衰减,热噪声和电噪声也会添加到信号中。室温下射频线的本底噪声已经远高于初始信号的激励。因此,如果不对原始信号进行任何类型的放大,几乎不可能看到任何读出信号。现在,图 1.1 中可以看到“使一些时间相关信号变大”如何有助于维持初始 SNR。虽然放大器本身会给信号添加一些噪声,但放大器会通过放大因子 G 抑制放大器后添加到信号中的所有损耗和噪声。实际上,会使用多级放大。如图 1.2 所示,在腔体输出处进行第一次放大之后,通常使用 4 K 的高电子迁移率晶体管 (HEMT) 和室温下的暖放大器进一步放大信号。
§ 量子效率有限(无雪崩倍增)§ 读出噪声(电路噪声)限制了最低可检测信号§ 积分时间长
图 1 (A) 来自参考文献 [23] 的同心 transmon 量子比特设计及其等效电路图(插图)。两个超导岛(绿色和蓝色)由一个小的约瑟夫森结桥(橙色)分流。使用共面波导谐振器(红色)读出量子比特状态。该读出谐振器电感耦合到信号线(黑色)。(B)transmon 量子比特的状态由约瑟夫森结的正弦电位(黑色实线)决定。在相位基(Δφ)中求解,特征能量(实线)可以用谐振子(虚线,相应颜色)来近似,其简并性通过结上的电容充电能量的一阶校正来消除[24 – 26]。(C)布洛赫球面图。基态 j 0 i 和第一个激发态 j 1 i 用于定义量子比特的逻辑状态 j ψ i ,它是 j 0 i 和 j 1 i 的线性组合,具有各自的复振幅 α 和 β 。j ψ i 可以通过电压脉冲和门控操作进行操纵,并通过投影到指定的测量基础上进行读出
训练初始解码器,长度不同,并包含不同数量的自适应解码器变化(闭环解码器自适应 (CLDA) 事件,见方法)。初始 CLDA 的数量在各个系列中有所不同,但旨在提供足够的控制以在整个工作区内移动光标,确保可以达到所有目标。中间系列 CLDA 事件仅旨在在神经测量值发生变化时保持性能。如前所示 [30],性能在多天内得到改善,从而提高了任务成功率并减少了到达时间(图 1C,猴子 J 的选定系列;所有后续单系列示例分析都使用此系列以保持一致性。有关猴子 S 的示例系列,请参见图 S1A,有关猴子 J 的其他示例系列,请参见图 S1C)。解码器在学习过程中进行了调整以调整参数(“仅更改权重”,图 1B)或替换非平稳单元并更新参数(“读出 + 权重更改”,图 1B)。初始解码器训练和读出集合变化时的读出单元选择仅基于单元记录属性(例如测量的稳定性);功能属性,例如有关
由于具有大规模量子计算的潜力,门控硅量子点中的自旋量子比特正受到越来越多的关注。这种自旋量子比特的读出最准确且可扩展的方式是通过泡利自旋阻塞 (PSB) 完成的,然而,各种机制可能会提升 PSB 并使读出复杂化。在这项工作中,我们介绍了硅纳米线中多电子低对称双量子点 (DQD) 中 PSB 的实验研究。我们报告了对非对称 PSB 的观察结果,当自旋投射到对中的一个 QD 时表现为阻塞隧穿,但当投射到另一个 QD 时表现为允许隧穿。通过分析 DQD 与读出谐振器的相互作用,我们发现 PSB 提升是由 7.90 μ eV 的不同电子自旋流形之间的大耦合引起的,并且隧穿是不相干的。此外,16 个电荷配置中的 DQD 磁谱能够重建 DQD 的能谱,并揭示提升机制是能级选择性的。我们的结果表明增强的自旋轨道耦合可能使硅纳米线中电子自旋的全电量子位控制成为可能。