我们考虑了读出误差和相干误差(即确定性相位旋转)对表面代码的综合影响。我们使用一种最近开发的数值方法,通过将物理量子位映射到马约拉纳费米子。我们展示了如何在存在读出误差的情况下使用这种方法,在现象学层面上进行处理:完美的投影测量,可能记录错误的结果,以及多次重复的测量。我们发现这种错误组合的阈值,其错误率接近相应非相干错误通道(随机 Pauli-Z 和读出误差)的阈值。使用最坏情况保真度作为逻辑错误的度量,阈值错误率的值为 2.6%。低于阈值,扩大代码会导致逻辑级错误的相干性迅速丧失,但错误率高于相应非相干错误通道的错误率。我们还分别改变了相干和读出误差率,发现表面代码对相干误差比对读出误差更敏感。我们的工作将最近关于完美读出的相干误差的结果扩展到实验上更现实的情况,即读出误差也会发生的情况。
基于数值优化的实现实际设备门和参数,我们研究了相位频率(重复)代码的性能,该代码在载有单粒细胞量子量子的线性芯片(GAAS)量子点的线性阵列上。我们首先使用电路级别和现象学噪声的简单误差模型来检查代码的预期性能,例如,报告的电路级去极化噪声阈值约为3%。然后,我们使用最大样本和最小匹配的解码器进行密度 - 矩阵模拟,以研究实现真实设备的消除,读出误差以及准危机以及快速门噪声的效果。考虑到量子读数误差与dephasing时间(t 2)之间的权衡,我们确定了位于实验范围内的相位闪光代码的子阈值区域。
产生大规模纠缠的能力是嘈杂中型量子 (NISQ) 设备中量子信息处理能力的重要前身。本文研究了在当前超导量子设备上准备大量量子比特纠缠量子态的程度。准备了 IBM Quantum 65 量子比特 ibmq_manhattan 设备和 53 量子比特 ibmq_rochester 设备上的原生图状态,并应用了量子读出误差缓解 (QREM)。检测到了跨越每个完整设备的连通纠缠图,表明每个设备的整体都存在二分纠缠。结果表明,QREM 的应用增加了所有测量中观察到的纠缠,特别是,在 ibmq_rochester 中发现的量子比特纠缠对的数量从总共 58 个连通对中的 31 个增加到 56 个。这项研究的结果表明,迄今为止最大的两个超导装置中存在完全的二分纠缠。
摘要:科学和技术的持续发展需要在越来越高的空间分辨率下进行温度测量。具有温度敏感发光的纳米晶体是提供高精度和远程读取的这些应用的流行温度计。在这里,我们证明了比率发光热实验可能会遭受纳米结构环境中的系统误差。我们将基于灯笼的发光纳米热计处于距AU表面高达600 nm的控制距离。尽管这种几何形状不支持吸收或散射谐振,但由于光态的变化密度变化导致温度计的变形导致高达250 K的温度读出误差。我们的简单分析模型解释了温度计发射频率,实验设备以及误差幅度的样品的效果。我们在几种实验场景中讨论了我们发现的相关性。这种错误并不总是发生,但是在反映界面或散射对象附近的测量中可以预期它们。关键字:光子学,光态的密度,温度传感,纳米晶,灯笼的发射
摘要 — 在当今嘈杂的中尺度量子 (NISQ) 设备上运行量子程序充满挑战。许多挑战源于测量过程中的快速退相干和噪声、量子比特连接、串扰、量子比特本身以及通过门进行的量子比特状态转换产生的误差特性。量子比特不仅不是“生来平等的”,而且它们的噪声水平也会随时间而变化。据说 IBM 每天校准一次量子系统,并在校准时报告噪声水平(误差)。随后,此信息用于将电路映射到更高质量的量子比特和连接,直到下一个校准点。这项工作提供了证据,表明这个每日校准周期还有改进的空间。它提供了一种在执行一个或多个敏感电路之前立即测量与量子比特相关的噪声水平(误差)的技术,并表明即时噪声测量可以有益于后期的物理量子比特映射。通过这种即时重新校准的转译,结果的保真度比 IBM 的默认映射(仅使用其每日校准)有所提高。该框架评估了两个主要的噪声源,即读出误差(测量误差)和双量子比特门/连接误差。实验表明,使用基于应用程序执行前误差测量的即时电路映射,电路结果的准确性平均提高了 3-304%,最高可提高 400%。索引术语 — 量子计算、错误、动态编译
AKLT 状态是各向同性量子海森堡自旋 1 模型的基态。它表现出激发间隙和指数衰减的关联函数,其边界处具有分数激发。到目前为止,一维 AKLT 模型仅在捕获离子和光子系统中进行了实验。在这项工作中,我们成功地在嘈杂的中尺度量子 (NISQ) 时代量子设备上准备了 AKLT 状态。具体来说,我们在 IBM 量子处理器上开发了一种非确定性算法,其中 AKLT 状态准备所需的非幺正算子嵌入在幺正算子中,每对辅助自旋 1/2 都有一个额外的辅助量子位。这种幺正算子实际上由由单量子位和最近邻 CX 门组成的参数化电路表示。与 Qiskit 的传统算子分解方法相比,我们的方法仅使用最近邻门即可实现更浅的电路深度,同时保持原始算子的 99.99% 以上的保真度。通过同时后选择每个辅助量子比特,使其属于自旋向上 |↑〉 的子空间,可以在量子计算机上通过从单重态加上辅助量子比特的初始平凡乘积状态演化系统地获得 AKLT 状态,然后通过对所有其他物理量子比特进行测量来记录该状态。我们展示了如何通过读出误差缓解在 IBM 量子处理器上进一步提高我们的实现的准确性。