摘要 — 我们展示了一种基于偏振编码 BB84 协议的量子密钥分发新发射器概念,该协议由正向偏置的 Ge-on-Si PIN 结的非相干光提供光源。我们研究了两种量子态准备架构,包括通过多个调制器进行独立偏振编码和利用干涉偏振调制器的简化方法。我们通过实验证明,Ge-on-Si 光源可以适应量子密钥生成,在 1 GHz 的符号速率下以 7.71% 的量子比特误码率实现 2.15 kbit/s 的原始密钥速率。我们进一步研究了光纤传输信道去偏振与非相干光源宽带特性相结合的影响。我们的结果证明了全集成硅量子密钥分发发射器(包括其光源)在零信任数据中心内部环境中的短距离应用的可行性。索引词 — 量子密钥分发、量子通信、量子密码学、硅光子学、去极化、光源
具有铁电极内化(面向A轴或X切片膜)。这样的X切割调节器的好处是在不构图BTO的情况下轻松地在标准的硅光子过程中制造。波导可以由沉积在BTO层的硅或氮化硅制成,并在沉积的BTO层和电极上形成,以形成Te-Mode EO调节剂[13]。然而,沿晶体的X方向应用的磁场访问R 42在BTO材料中经历了极高的介电常数,通常超过1000。这个高介电常数直接转化为EO调制效率的降低。相比之下,沿z-方向应用的字段访问R 33 Pockels组件经历了典型的BTO介电常数小于60。介电载荷的减少可以抵消EO系数的降低。我们为配置制造了Mach-Zehnder调制器,并比较其制造和调节效率的易度性,并证明SI平台上的BTO适合于与硅光子制造兼容的低功率,小型脚印Mach-Zhhnder调制器兼容。
摘要 提出了一种偏振不敏感的石墨烯基中红外光调制器,由SiO 2 /Ge 23 Sb 7 S 70 组成,其中嵌入了两层石墨烯,采用半椭圆布局,以支持具有相同吸收率的横磁 (TM) 和横电 (TE) 偏振模式。偏振无关调制器的关键性能指标是偏振灵敏度损耗 (PSL)。我们器件的波导只支持基本的 TE 和 TM 模式,两种模式之间的 PSL < 0.24 dB。该模型可以提供大于 16 dB 的消光比 (ER) 和小于 1 dB 的插入损耗。工作光谱范围为 2 至 2.4 μm,光学带宽为 400 nm。根据理论计算,3 dB 调制带宽高达 136 GHz。关键词:硫属玻璃,石墨烯,中红外,光调制器,偏振不敏感
摘要 — 本文介绍了一种空间时间平均技术,该技术可实现瞬时小数分频,从而显著降低小数 N 锁相环 (PLL) 中的量化误差。空间平均可通过使用并行运行的分频器阵列来实现。它们的不同分频比由小数调制器 (DSM) 和动态元件匹配 (DEM) 块产生。为了降低分频器功率,本文还提出了一种仅使用一个分频器和相位选择来实现空间平均的方法。原型 2.4 GHz 小数 N PLL 采用 40 nm CMOS 工艺实现。测量结果表明,所提出的技术分别在 1 MHz 和 10 MHz 偏移处将相位噪声降低了 10 dB 和 21 dB,从而使积分均方根抖动从 9.55 ps 降低至 2.26 ps。索引术语——调制器(DSM)、数据加权平均(DWA)、动态元件匹配(DEM)、小数N分频PLL、频率合成器、相位噪声、锁相环(PLL)、量化噪声降低。
太赫兹 (THz) 波因其大带宽和丰富的光谱资源在成像、传感和通信方面表现出良好的应用前景,尤其在下一代无线通信中。用于操纵 THz 波的调制器和波导正在成为开发相关技术的关键部件,其中超材料分别在控制自由空间和片上传播方面表现出非凡的性能。在本综述中,我们将简要概述当前有源超器件和拓扑光子晶体的进展,以了解太赫兹自由空间调制器和片上波导的应用。在第一部分中,我们将通过将超材料与各种有源介质相结合来讨论有源太赫兹超器件的最新研究进展。在第二部分中,我们将介绍光子拓扑绝缘的基本原理,其中拓扑光子晶体是一个新兴的研究领域,将推动片上太赫兹通信的发展。我们设想,它们的结合将在更先进的太赫兹应用中找到巨大的潜力,例如可重构拓扑波导和拓扑保护的元设备。
卫星串行链路用于更高的数据吞吐量和更高频率的电信有效载荷,这需要更多地使用机载计算机处理,因此光学互连成为卫星上数字有效载荷的首选解决方案。特别是,数据速率的增加加剧了与电气域互连相关的挑战,其中传输距离随着比特率的增加而显著缩短。这既限制了 ASIC 的 SerDes 通道的覆盖范围,也导致需要更复杂的调制格式和更多的 DSP,这两者都会导致功耗增加。光学互连还受益于重量减轻和对 EMI 的免疫力。到目前为止,卫星有效载荷的光学收发器一直专注于基于中板 VCSEL 的技术,第一代收发器的速度为 12.5 Gb/s 1 已在轨道上演示,第二代设备的目标是 25 Gb/s,预计将在下一步演示。然而,与地面数据中心的趋势类似,数据速率现在正在增加到对直接调制 VCSEL 具有挑战性的水平,而转向 O 波段和 C 波段更常见的通信波长也带来了许多优势。共封装光学器件 (CPO) 是地面数据中心应用的新兴标准,有机会为卫星有效载荷采用类似的架构。CPO 的目标是将光收发器集成到非常靠近功能性 ASIC/FPGA 的位置,从而能够使用功率较低的短距离 SerDes 并促进更高数据速率的传输,同时保持信号完整性并减轻 EMI 效应。通过 ESA 合同“ProtoBIX”,MBRYONICS 和 imec 正在开发一种基于硅光子的收发器,该收发器从头开始设计,用于部署在卫星有效载荷上。共封装方法采用单独的 Rx 和 Tx 光子集成电路 (PIC),以实现电吸收调制器 (EAM) 和光电二极管 (PD) 的高性能。 EAM 的优势在于它们比环形调制器具有更大的光带宽,而且与基于环形谐振器的设计相比,它们不需要波长调谐。Tx 和 Rx PIC 在 imec 的 iSiPP200 平台上制造,而定制的抗辐射调制器驱动器则在 IHP SG13RH SiGe BiCMOS 工艺 2 上设计和制造。收发器使用 NRZ 调制时的数据速率为每通道 56 Gb/s。通过详细分析,NRZ 格式被选为最有前景的格式,因为它允许使用直接驱动概念,其中 ASIC/FPGA SerDes 驱动调制器驱动器并消除了 CDR 和重定时,同时也消除了对 DSP 的需求。此外,与 56 GBd NRZ 相比,28 GBd PAM4 所需的线性度会导致显著的功率损失。