钼二硫化物(MOS 2)是最相关的2D材料之一,主要是由于其半导体的直接带隙,使其成为电子,光电电子和光子学的有希望的材料。[8-10]同时,碳纳米管是研究精通的1D材料之一,可以提供高构成性和载体迁移率,[11,12],这使它们成为与MOS 2的混合尺寸异质结构相关的。的确,一些努力为MOS 2 /碳纳米管异质结构做出了贡献。例如,具有MOS 2和单壁碳纳米管的异质结构已通过干燥转移制造,并制造了垂直的场效应晶体管,该晶体管与MOS 2 /石墨烯设备相比,栅极调制深度增加了三个数量级。[13]混合二维异质结构设备可以用作活跃显示器中的薄膜晶体管,但是所证明的干燥转移显然不是可扩展性生产的理想方法。为了解决这个问题,开发了通过化学蒸气沉积(CVD)在单壁碳纳米管上直接沉积。过渡金属氧化物和硫用作在单壁碳纳米管膜上沉积MOS 2或WS 2的前体。[14]在这项工作中,混合尺寸的侵蚀设备具有吸引人的电气性能和出色的机械稳定性。但是,研究在研究中忽略了混合二维异质结构的堆叠顺序,这些异质结构可以提供对异质结构和电极之间的联系的特征。在这里,我们首次报告了一种直接合成MOS 2 /双壁碳纳米管(DWCNT)< /div>的方法
归因于脑电图(EEG)信号的信噪比差(SNR)[3]。可以通过增加信号水平和/或降低噪声水平来改善SSVEP信号的SNR。研究人员在改善SSVEP的SNR并提高BCI性能方面取得了长足的进步。首先,研究人员通过应用高级信号处理方法改善了SNR。例如,在当前的BCI系统中广泛使用试验平均,以改善脑电图分析中的SNR [3]。空间过滤已用于将多通道脑电图数据投射到低维空间空间中,以消除任务 - 无关的组件并改善与任务相关的EEG信号的SNR [4]。对于SSVEP,规范相关分析(CCA)方法可以最大程度地提高SSVEP的检测频率[5,6]。独立的组件分析是另一种空间滤波方法,通过将与任务相关的脑电图组件与任务 - iRrelevant eeg和人为成分分开,从而增强了脑电图信号的SNR [7,8]。第二,研究人员设计了实验以获得增强的与任务相关的脑电图信号并改善SNR。例如,在有效的基于SSVEP的BCI中,与使用Checkerboard刺激获得的刺激相比,使用情感人脸的视觉刺激大大提高了SSVEP信号的振幅[9]。第三,一些研究人员调整了视觉刺激亮度的参数,以调节SSVEP响应的幅度,从而改善了SSVEP的SNR [10-12]。例如,相关研究表明,亮度对比信息对于形式,运动和深度的感知至关重要[13,14]。亮度对比或“调制深度”定义为最大亮度的比率减去最小亮度与最大亮度以及
摘要:过渡金属碳化物和氮化物(MXenes)由于其受灵活的组成或表面功能团调控影响的高度可调的电子和光学性质而在光电应用领域引起了广泛关注。先前超快光子研究中使用的 Ti 3 C 2 T x MXenes(-F,-OH,=O封端)通常通过通用的氢氟酸(HF)蚀刻策略合成,这可能导致大量缺陷,从而阻碍 Ti 3 C 2 T x 的光电性能。在本文中,受到通过微密集层剥离法(MILD)蚀刻策略制备的 Ti 3 C 2 T x(-F,-OH,=O,-Cl封端)更高的电导率和载流子迁移率的启发,我们采用液相剥离(LPE)方法进一步优化它,以合成纯 Ti 3 C 2 T x 量子点(QDs)用于超快光子学。与在 1550 nm 下运行的其他 QDs 可饱和吸收体 (SA) 器件相比,我们的 SA 器件表现出相对较低的饱和强度 (1.983 GW/cm − 2 ) 和较高的调制深度 (11.6%),从而更容易产生锁模脉冲。在通信波段获得了以 1566.57 nm 为中心波长、基频为 22.78 MHz 的 466 fs 的突出超短脉冲持续时间。考虑到基于这种 Ti 3 C 2 T x QDs 锥形光纤的 SA 是对 Er 3+ 掺杂光纤激光器 (EDFL) 的首次探索,这项工作将为超快光子学的应用开辟一条新途径。