摘要 - 在此简介中,根据所提出的三模式SIW模式的siW共振腔,在此简介中,具有高选择性和可控制的中心频率的两个紧凑型三波段底物(SIW)带通滤波器(BPFS)具有高选择性和可控制的中心频率。第一个分析了三模式SIW腔的谐振特性,并且某些关键参数对谐振频率的影响相对较大,以进一步阐明vias扰动的Siw腔结构的可触发控制。使用单层底物设计了提议的三模式SIW腔的超级性,这是一个三层SIW BPF的原型,以11.18、12.61和13.33GHz为中心,是使用单层底物设计的。为了进一步降低占用尺寸,可控制中心频率为11.93、13.21和14.12GHz的三频SIW BPF是基于电气和磁耦合结构的,使用两个层基板构建。拟议的三波段BPF均表现出六个传输零(TZS),从而产生了良好的带外拒绝。测得的结果与模拟的结果非常吻合。
建立和评估用于校准声发射传感器的测试设施的研究 Trevor J Esward、Peter D Theobald、Susan P Dowson 和 Roy C Preston 机械和声学计量中心 国家物理实验室 摘要 本报告记录了建立和评估用于校准声发射传感器的参考测试设施的研究结果。结果表明,通过使用特性良好的玻璃测试块进行透射测量,可以在压缩波模式下实现传感器校准。获得了一种具有高灵敏度和出色噪声性能的新型激光干涉仪,并且结果表明,激光干涉法为校准目的提供了一种非接触式测量表面位移的有效方法。为这项工作选择的校准方法依赖于通过玻璃测试块传输相对较长的音调突发。然而,事实证明,鉴于块的尺寸有限,以及可用于校准的 AE 传感器的谐振特性,该方法可能对用于分析校准数据的信号处理方法很敏感。如果测量不确定性不会变得过大,则较低频率的谐振传感器的校准将需要更大的测试块,但宽带宽传感器的校准可能会被证明不那么成问题。该报告还回顾了声发射领域的现有国际标准,并描述了国家测量机构和其他对声发射传感器特性感兴趣的组织所采用的校准方法。此外,它还为声发射传感器用户提供有关校准和测试方法的建议和指导。
敏感传感器、全光开关和可重构分插滤波器[5-7]。前期工作中,利用微环谐振器(MRR)的对称谐振特性,已经制作出许多带宽可调的器件[8-12]。例如,一种是基于单个微环谐振器的滤波器,其谐振器的耦合系数由微机电系统调整。然而,要实现 MEMS 可调谐性,需要施加近 40 V 的高驱动电压 [5]。另一种也是基于单个微环谐振器的滤波器 [13]。其谐振器的耦合系数由热光移相器调整。这种滤波器的缺点是带宽变化范围有限,带外抑制性能较差。还有一种结合了 MZI 和环形谐振器的滤波器,环形谐振器嵌入 MZI 臂中,其带宽调谐受到带内纹波和插入损耗的限制 [14]。在本文中,我们展示了一种基于环形谐振器和具有 Fano 谐振的 MZI 的带宽可调光学滤波器。它由两个单个 MRR 和一个由两个 1 9 2 多模干涉 (MMI) 构成的 MZI 结构组成。两个单个 MRR 的耦合系数均由热光移相器调谐。在这种新设计中,由两个 TiN 加热器控制的两个 MRR 可用于产生额外的相位以打破正常 MRR 的对称洛伦兹形状。通过两个不对称洛伦兹形状的叠加可以观察到 Fano 谐振,并且 3 dB 通带明显增宽。利用硅的热光(TO)特性,带宽范围从0.46到3.09nm,比以前的器件更宽。输出端口的消光比大于25dB,自由光谱范围(FSR)为9.2nm,适合光电集成电路中的传输。众所周知,通过端口3dB,带宽是一个重要的
具有C 2 位对称性的[YO 6 ] 9 局域单元。17 Y 2 O 3 晶体在掺杂适当稀土离子后,由于其高热导率和低声子能量,可以作为良好的激光基质材料。18 近年来,Ho 3+ 掺杂的Y 2 O 3 (Y 2 O 3 :Ho)晶体作为一种很有前途的激光材料受到了广泛的研究。19 Laversenne 等人首次利用激光加热基座生长 (LHPG) 技术生长了Ho 3+ 掺杂的Y 2 O 3 单晶。20 此外,他们还特别分析了Y 2 O 3 :Ho的动态激光谐振特性。秦等人研究了Ho 3+掺杂的Y 2 O 3 在532 nm 连续波激光激发下的发光光谱。 21结果表明Ho3+离子在紫外和紫外区(306、390和428nm)有多个荧光跃迁,这些跃迁分别归属为3D3/5I8、5G4/5I8和5G5/5I8的跃迁。Wang等人报道了在2.1mm左右的Y2O3:Ho实现了高输出激光操作,具有低散射损耗和优异的光学质量。22他们的结果表明Ho3+掺杂的Y2O3体系作为激光增益介质在高功率和高效激光应用中展现出诱人的前景。尽管对Y2O3:Ho已经有大量研究报道,但还没有系统的研究来阐明其微观结构和电子特性。本文基于 CALYPSO(粒子群优化晶体结构分析)23 – 27 方法结合 DFT(密度泛函理论),对 Y 2 O 3 : Ho 进行了广泛的结构搜索,获得了基态结构。此外,我们计算并分析了能带结构、态密度和 ELF(电子局域化
频率选择表面 (FSS) 由周期性排列的一维或二维金属结构组成,由于其频率谐振特性而备受关注。FSS 可以根据其尺寸、形状、厚度和其他参数在特定频率范围内选择性地反射 (带阻) 或透射 (带通) 入射电磁波,这是 FSS 的识别特征。[1] 金属和介电材料结构被广泛用于设计太赫兹 FSS 或滤波器,因为它们具有高机械强度,有助于产生功能化设计。金属 FSS 可以通过反射或吸收电磁干扰来屏蔽,但是,制造所需结构的成本很高,并且正在被碳基材料取代,以获得高频电磁特性,具有合适的成本、重量轻、无腐蚀等特点。[2] 通常,碳基材料以 sp、sp 2 和 sp 3 键合,形成相互连接的碳-碳键的长链,从而产生不同的物理和电性能。 [3] 因此,这类材料可归类为半金属或非电介质材料(如石墨烯、石墨、碳纳米管、碳纳米纤维)[4,5],因此通过在磁场和电场中应用飞秒激光脉冲产生 THz 脉冲,其纳米复合材料可表现出 THz 光跃迁、光电特性和介电特性。[6–11] 由于存在非局域 π 键电子,这些碳基材料表现出优异的 EMI 屏蔽性能。自由移动的电子与电磁波相互作用,导致反射,在共振频率下具有最大回波损耗值。[12] 过多的电磁能量会损坏周围的电路并引起不必要的噪声脉冲。Liang 等人。报道了竹状短碳纤维@Fe3O4@酚醛树脂和蜂窝状短碳纤维@Fe3O4@FeO复合材料作为高性能电磁波吸收材料,在4-18 GHz范围内成功实现了反射损耗-10 dB。[13]然而,在文献中对碳基材料在THz范围内的表征仍然没有很好的解释,关于碳基材料FSS特性的报道很少。最近,一种利用3D打印制造的碳基FSS吸收器