纳米结构在过去四十年中的线性和二维到三维纳米版本不等。8这些纳米结构包括分支的DNA基序,12,20瓦组件,8,21 - 23个折纸结构,24 - 27纳米范围28和动态纳米结构。29,30 DNA纳米技术已成为一种有前途的技术,其优势比传统材料(包括高存储密度,潜在的低能量需求和长期稳定性)具有多种优势。the lyd已经在结构生物学,生物物理学和药物生物学中解决了解决基本科学问题的应用。4这些应用包括组织工程,4,31 - 34个免疫工程,35,36药物输送,37 - 45疾病诊断4,46,47和分子生物学工具或生物传感器。45,47,48 DNA结构与其他生物聚合物和纳米纳米材料相比具有独特的特性。基于DNA的纳米材料的结构允许iveistions cessigity,因为可以将每条线串联或与伸展的臂连接。DNA框架的组装为药物分子提供了一个空心的内部空间,从而实现了有效的药物递送。DNA纳米颗粒具有负电荷,可以通过静电吸引力整合带正电的物质。它们可以用作建筑材料的构建块和治疗剂,例如在自组装的球形核酸中表现出高细胞摄取并执行基因敲低。49
摘要:纳米纤维素是一种基于生物的材料,在水纯化领域具有巨大的潜力。可能用作从溶液中去除金属离子的关键吸附剂材料。然而,尚不清楚吸附在纤维素表面上的金属离子的结构。这项工作的重点是使用异常的小角X射线散射(ASAXS)定量地确定带负电荷的箱子型纤维素纳米晶体(CNC)的不同货架的金属离子的三维分布。这些分布会影响这些材料中的水和离子通透性。数据表明,将CNC表面的羧酸盐密度从740 mmol/kg增加到1100 mmol/kg改变了吸附离子的结构的性质,从单层变成了单层结构。单层在CNC纳米颗粒周围建模为船尾层,而多层结构则建模为纳米颗粒周围柱状层顶部的弥漫层。在船尾层中,最大离子密度从1680升至4350 mmol的RB + /(CNC的kg),随着纳米颗粒表面上的羧酸盐密度的增加。此外,数据表明,CNC可以利用多种机制(例如静电吸引力和交际效应)来吸附不同价值的植物。通过了解吸附金属离子的空间组织,可以进一步优化基于纤维素的吸附剂的设计,以提高分离应用中的吸收能力和选择性。关键字:纤维素纳米晶,吸附,异常小角X射线散射,吸附剂,水净化,离子交换a
铅酸电池是最古老的电化学存储系统之一,在各种途径中仍然可以广泛应用,从汽车电池到网格存储。电池化学既简单明了),在放电期间,通过食用硫酸(用作电解质),从金属铅(在负电极(PB)上)和二氧化铅(在阳性电极(PBO 2)上)产生硫酸铅(PBSO 4)。该电池的主要优点是其低成本,99%的有效回收,原材料的丰度,相对安全性,低温性能和高特异性功率。但是,许多更新的应用(例如E- Rickshaw,轻度混合体和太阳能PV应用程序)需要铅电池以高速率和部分充电状态(PSOC)caccip cyclities cyclities cycling cycling。在电荷运行过程中,主要问题称为负板硫酸盐,因为这些工作条件允许更容易生成大铅硫酸盐晶体。较大的晶体比其体积相对较低,并且在电池充电期间更难减少。这导致其容量和电池过早故障的下降。这种现象主要发生在负板上,因为具有相对较高比表面积的正板不容易硫化。碳在负板中的作用至关重要,尤其是在负电荷状态下运行的电池,NAM中的碳碳的电动表面积增加了电极的电活性表面积,从而提高了NAM的固定性固定性和固定性的固定性,并提高了NOM的固定性。
摘要:在许多生物体中,生物分子与碳酸钙的各种表面都有良好的相互作用。在这项工作中,我们考虑了天冬氨酸 (Asp) 衍生物与方解石的相互作用,作为复杂生物分子的模型。利用动力学生长实验,我们研究了 Asp、Asp 2 和 Asp 3 对方解石生长的抑制作用。这需要确定阶梯钉扎生长模式以及评估这三种物质与方解石晶体的吸附常数和结合自由能。将后者的值与从完全原子分子动力学模拟中获得的自由能曲线进行比较。当在模型中使用平坦的 (104) 方解石表面时,测量的结合能趋势很难再现。然而,一个更现实的模型由一个带有边缘和角的岛的表面组成,产生的结合能与实验结果非常吻合。令人惊讶的是,我们发现大多数结合模式都涉及带正电的铵基团。此外,虽然也经常观察到带负电荷的羧酸基团的附着,但它总是被等量或更多羧酸盐的水溶剂化所平衡。这些影响在方解石的所有特征上都观察到,包括边缘和角落,后者与对 Asp 衍生物的主导亲和力有关。由于这些特征也正是晶体生长的活性位点,实验和理论结果强烈指向生长抑制机制,即这些位点被阻塞,阻止溶解离子进一步附着并停止进一步生长。
抽象的月亮 - 阿波罗计划期间通过轨道和表面实验观察到血浆相互作用。光子和带电的颗粒为月球表面充电,并形成薄的debye-比例等离子鞘,在日光下和阴影半球上方。此外,电子的平均热速度,导致Debye鞘在航天器周围形成。光电子和等离子体鞘直接在表面上吸收的灰尘谷物,这些粉尘呈凸起,随后充电的尘埃流动呈负电荷,并与降落的航天器的正面表面接触。作为电荷载体,灰尘颗粒被吸引或排斥在带电的航天器上。环境等离子体和高次级排放的低密度也有助于横杆上的表面充电速率高。电荷在航天器和航天器组件上的积累是由航天器与空间等离子体,能量粒子流和太阳光子相互作用而产生的,该太阳光子通常由游离电子和光子驱动。据报道,归因于航天器充电的各种效果是导致许多操作异常的原因,包括操作异常组件故障,伪造命令,物理航天器表面损伤以及航天器表面材料热和电特性的降解。等离子体的研究 - 表面相互作用显示出有希望的结果,用于开发新型的粉尘缓解航天器充电安全管理的策略。关键字:等离子表面相互作用,等离子鞘,(航天器)表面充电本文旨在调查减轻月球尘埃作为等离子表面相互作用的载体的策略,从而导致航天器充电。
首席研究者已经对GO纳米片的基本物理特性和应用进行了研究。在GO纳米片和GO膜中的离子电导率中,我们发现离子电导率超过了Nafion的电导率。在还原形式的情况下,RGO,还通过还原方法成功控制了P型,N型和解体半导体特性的降低形式。此外,GO的氧官能团是负电荷的,杂种是通过与各种金属离子的静电相互作用形成的,并且发现以RGO杂种,金属氧化物和金属纳米颗粒的降低形式在RGO纳米片上支持。在GO和RGO纳米片的合成中,使用液体等离子体掺杂了各种原子,并且通过热液合成和Freeze-Drysing从GO和RGO纳米片形成的3D结构也成功。因此,着重于研究获得的材料中的钻石相变,我们首先合成了N-RGO的氮掺杂钻石。尽管结果是初步的,但我们观察到在纳米颗粒相中T C = 30 K的Meissner效应,而在大量相中,T C = 130 K。此外,从高温和高压在高压中合成的钻石显示出T C = 65 K的铁磁过渡。此外,它们还致力于合成硼掺杂和氧气掺杂的钻石。这些结果表明,在掺杂的钻石中开发各种功能材料的有效性,并且有必要迅速促进掺杂或表面修饰的钻石的研究和开发。
摘要:海水中卵泡运动的运动的摄影测试表明,气泡可以产生单一或两种结合的旋转,其结构类似于RNA或DNA结构。旋转和电线运动是由离子水合物的加速度导致的,离子水合物的加速度在卵泡的上和下曲率上分离到阴离子和阳离子的结构域。然后将这些运动加速在气泡下产生的涡流的上部片段中,之后它们在涡流的最终片段中制动。由于快速自旋而产生明显的摩擦,从而导致电原子H,C,N,O和P的极化。同时,旋转离子和偏振原子可以产生磷酸盐分子,环核糖,环状核果和氮原理块的电块,配备了H 2或H 3转子。这种构型表明氢转子可能具有通过相邻电极原子的价涂层刺激的振荡产生电子的能力。然后,电子可以流经氮和脱氧核糖或核糖流向磷酸基团。因此,带负电荷的磷酸基团可以吸引阳离子的水合物并刺激其在凹槽中的旋转运动,也会导致阳离子的螺旋流动,超过RNA/DNA凹槽。该流程可能导致核苷酸复制及其沿阳离子线的螺旋组织以及RNA或DNA聚合物的合成,即与最初在气泡下的经文中创建的方式相同。更重要的是,它表明由氢原子制成的转子可以产生生命所需的能量,以及与所有物理和化学领域的CO相结合。
摘要:缺血性中风引起的神经元细胞死亡导致脑功能的永久性损害。Fas介导的外在凋亡途径和细胞色素c介导的内在凋亡途径是导致缺血性中风神经元损伤的两种主要分子机制。在本研究中,我们使用了Fas阻断肽(FBP)与带正电荷的九聚精氨酸肽(9R)偶联,与带负电荷的靶向Bax的siRNA(FBP9R/siBax)形成复合物。该复合物专门用于将siRNA递送至表达Fas的缺血性脑细胞。该复合物能够靶向抑制Fas介导的外在凋亡途径和细胞色素c介导的内在凋亡途径。具体而言,FBP靶向Fas/Fas配体信号传导,而siBax靶向参与内在途径中线粒体破坏的Bax。 FBP9R 载体系统能够将功能性 siRNA 递送至表面表达 Fas 受体的缺氧细胞 — 这一发现已通过 qPCR 和共聚焦显微镜分析得到验证。通过鼻内 (IN) 向大脑中动脉闭塞 (MCAO) 缺血大鼠模型施用 FBP9R/siCy5,脑成像显示该复合物专门定位于表达 Fas 的梗塞区域,但并未定位在大脑的非梗塞区域。单次鼻内施用 FBP9R/siBax 可有效抑制 Fas 信号传导并阻止细胞色素 c 的释放,从而显著减少神经元细胞死亡。FBP9R/siBax 的靶向递送代表了治疗脑缺血的一种有前途的替代策略。
选定的核糖核苷酸序列与zwitterionic磷脂双层膜良好结合,尽管随机RNA却没有。在选定的膜结合RNA中没有明显的重复序列。这意味着负责膜亲和力的小小的和多样化的图案。此类子序列已被部分定义。绑定的RNA需要Mg 2+和/或Ca 2+之类的分隔线,更喜欢有序的磷脂:凝胶,波纹或筏膜,以此顺序。rNA还结合并稳定弯曲或急剧变形的双层。相比之下,没有二线的RNA结合扩展到由简单的阴离子磷脂形成的负电荷的膜,并具有合理的益生元脂肪酸双层。RNA膜还保留RNA功能,例如碱基配对,色氨酸的被动转运,对肽侧链(如精氨酸)的特异性亲和力以及核糖酶连接酶的催化。具有生化功能的多个膜结合的RNA,通过特定的碱基对链接。鉴于这些实验事实,遗传效应似乎是合理的。RNA的功能通常驻留在几个核苷酸中,并且很容易连接在一个小的RNA中。这些基础对基团可以演变为有目的的,连接相关的RNA函数。这样的RNA组允许复杂的基因组功能,但仅需要复制短RNA。RNA膜促进细胞分裂的精确RNA分离,并通过附加新的碱基配对功能迅速发展。因此,古代RNA-膜可以充当原始组,支持在DNA和DNA基因组之前有序编码的RNA表达,遗传和进化。
摘要 引言:卡介苗 (BCG) 的疗效有限,迫切需要新的有效的疫苗接种方法来控制结核病。聚乳酸-乙醇酸 (PLGA) 是一种常见的药物递送系统。然而,PLGA 基纳米颗粒 (NPs) 诱导粘膜免疫反应对抗结核病的作用尚未完全阐明。在本研究中,我们假设用载有培养滤液蛋白 10 (CFP10) 的 PLGA NPs (CFP10-NPs) 进行鼻内免疫可以增强 BCG 在小鼠体内对牛分枝杆菌的保护性免疫。方法:将重组蛋白 CFP10 封装在 PLGA NPs 中,采用经典的水-油-水溶剂蒸发法制备 CFP10-NPs。然后,研究了CFP10-NPs对体外巨噬细胞和体内BCG免疫小鼠的免疫调节作用。结果:我们使用球形CFP10-NPs,其表面带负电荷(zeta电位-28.5±1.7mV),粒径为281.7±28.5nm。值得注意的是,CFP10-NPs显著增强了J774A.1巨噬细胞中肿瘤坏死因子α(TNF-α)和白细胞介素(IL)-1β的分泌。此外,用CFP10-NPs进行粘膜免疫显著增加血清中TNF-α和IL-1β的产生,以及支气管肺泡灌洗液(BALF)中免疫球蛋白A(IgA)的分泌,并促进小鼠脾细胞中CFP10特异性干扰素-γ(IFN-γ)的分泌。此外,CFP10-NPs 免疫显著减少了 M. bovis 攻击后 3 周肺组织的炎症面积和细菌负荷。结论:CFP10-NPs 显著提高了 BCG 的免疫原性和保护效力。我们的研究结果探索了基于 PLGA NPs 的气道粘膜疫苗作为肺靶向递送载体的潜力。