•MDP空间中V ∗和Q ∗的Lipschitz连续性的理论研究; •根据MDP之间的局部距离提出的实用,非负转移方法; •在终身RL设置中应用此转移方法的PAC-MDP算法的建议和研究。
摘要。在过去的十年中,大规模的癌症法学研究强调了患者分子方案的多样性以及利用此信息在正确的时间向正确患者提供正确的药物的重要性。学习预测模型的关键挑战包括OMIC数据的高维度,可用数据点的限制以及生物学和临床因素的异质性影响患者反应。多任务学习(MTL)技术已被广泛探索以解决用于体外药物反应模型的数据集限制,而域适应性(DA)已被用来扩展它们以扩展它们以预测体内响应。在这两个转移学习设置中,与单任务(域)学习者相比,某些任务(或域)的嘈杂数据可以实质上为其他任务提供了绩效,即导致负转移(NT)。我们描述了一种新颖的多任务无监督的DO-主要适应方法(TUGDA),该方法通过量化预测变量的不确定性并加权其对共享域/任务特征表示的影响来解决统一框架中解决这些局限性。tugda的能力更多地依赖于低确定性的预测因子,与最先进的方法相比,体外模型的阴性转移病例显着减少了体外模型的负转移病例(63%的药物和94%的药物)。针对体内环境的域适应性,TUGDA在患者衍生的异种移植物中的12种药物中有6种改进了性能,尽管接受了无监督的方式接受培训,但在TCGA患者数据集中有22种药物中有7种。TUGDA避免负转移的能力,因此具有关键能力,因为我们试图将多种药物响应数据集整合在一起,以将一致的预测模型与体内效用构建一致的预测模型。
摘要。联合学习最近已发展为一个关键的分离学习范式,其中服务器将众多经过客户培训的模型汇总到全球模型中,而无需访问任何客户端数据。公认的是,统计异质性在客户本地数据中对全球模型收敛速度的影响,但十个低估的,这种异质性也会导致偏见的全球模型,其准确性差异很大。上下文,普遍的解决方案需要修改优化目标。但是,这些解决方案经常忽略隐式关系,例如站点数据分布的成对距离,这使客户模型之间的成对独家或协同优化。这种优化会损害早期方法的功效,从而导致性能失衡甚至负转移。为了解决这个问题,我们提出了一种新颖的聚合策略,称为基于图形图的增强学习(Fedgraphrl)。通过在服务器端部署配备多层自适应图卷积网络(AGCN)配备的增强学习(RL)代理,我们可以从客户端状态向量中学习协作图,从而在优化过程中揭示客户端之间的协作关系。在引入的奖励的指导下,代理商分配了聚合权重,从而促进了自动决策和公平的改进。两个现实世界中多中心医学数据集的实验结果表明了拟议的Fed-GraphRl的有效性和优势。
基于脑电信号和解码大脑活动的病理诊断对于理解神经系统疾病具有重要意义。随着人工智能方法和机器学习技术的进步,准确的数据驱动诊断和有效治疗的潜力显着增长。然而,将机器学习算法应用于现实世界的数据集在多个层面上提出了不同的挑战。标记数据的稀缺性,特别是在低水平场景中,由于招募成本高,真实患者队列的可用性有限,凸显了扩展和迁移学习技术的重要性。在本研究中,我们探索了一个现实世界的病理分类任务,以突出数据和模型扩展以及跨数据集知识转移的有效性。因此,我们观察到通过数据扩展可以获得不同的性能改进,这表明需要仔细评估和标记。此外,我们确定了可能的负转移挑战,并强调了一些关键成分对克服分布偏移和潜在的虚假相关性并实现正转移的重要性。当可用的标记数据量较少时,通过使用源数据集 (TUAB) 中的知识,我们发现目标模型在目标 (NMT) 数据集上的性能有所提高。我们的研究结果表明,小型通用模型(例如 ShallowNet)在单个数据集上表现良好,而大型模型(例如 TCN)在从大型多样化数据集进行迁移和学习方面表现更好。