除非另有说明, 1输出使用220µF触觉低ESR电容器将其分解至地面上。 (见图1)2通过设计保证,但未测试。 典型参数代表实际设备性能,但仅供参考。 3个工业级设备应测试到子组1,除非另有说明。 4类H,K设备应100%测试到亚组1,2和3。。 5亚组1 t a = t c = +25°C亚组2 t a = t c = +125°C子组3 t t a = t c = -55°C 6在测试线调控时经过验证的最小负载电流。 7相对于VOUT测量电压。 8引用当前极限典型性能曲线,用于输入到输出电压差分经文电流功能。 9在绝对最大评级下的连续操作可能会对设备性能和/或生命周期产生不利影响。 除非另有说明, 10在25°C下的辐射限度(Si)tid在25°C时是相同的。1输出使用220µF触觉低ESR电容器将其分解至地面上。(见图1)2通过设计保证,但未测试。典型参数代表实际设备性能,但仅供参考。3个工业级设备应测试到子组1,除非另有说明。4类H,K设备应100%测试到亚组1,2和3。5亚组1 t a = t c = +25°C亚组2 t a = t c = +125°C子组3 t t a = t c = -55°C 6在测试线调控时经过验证的最小负载电流。7相对于VOUT测量电压。8引用当前极限典型性能曲线,用于输入到输出电压差分经文电流功能。9在绝对最大评级下的连续操作可能会对设备性能和/或生命周期产生不利影响。10在25°C下的辐射限度(Si)tid在25°C时是相同的。10在25°C下的辐射限度(Si)tid在25°C时是相同的。
本文将基于 PSO 的 PI 控制应用于 APF 拓扑的系统切换功能。使用粒子群优化 (PSO) 方法对有源电力滤波器 (APF) 的比例和积分 (PI) 增益进行调整,以进行无功功率补偿和谐波抑制。传统的 PI 控制器需要更多的计算时间并且精度较低。使用瞬时有功和无功功率方案提取谐波负载电流。将使用 PSO 训练的 PI 控制器与传统 PI 控制器的性能指标(包括总谐波失真、无功功率、功率因数和电容器电压调节)进行了比较。PSO 具有快速收敛、最少的调整参数和快速执行来解决非线性问题的特点。传统的 PI 控制器被在线 PSO 训练的 PI 控制器所取代,目的是在非线性负载条件下增强 APF 中的直流电压跟踪。所提出的工作是在 sim-power system 工具箱中开发的,该工具箱是 Matlab/Simulink 中的一个软件包。
AP1313 需要适当的输入电容来在阶跃负载瞬变期间提供电流浪涌,以防止输入电压轨下降。因为从电压源或其他大容量电容到 VIN 引脚的寄生电感限制了浪涌电流的斜率,所以寄生电感越大,输入电容就越大。超低 ESR 电容(如陶瓷芯片电容)和低 ESR 大容量电容(如固体钽电容、POSCap 和铝电解电容)都可以用作 VIN 的输入电容。对于大多数应用,建议的 VIN 输入电容至少为 10µF。但是,如果不关心输入电压的下降,输入电容可以小于 10µF。输出电容 AP1313 专门设计用于与低 ESR 陶瓷输出电容配合使用,以节省空间。建议使用电容至少为 4.7µF 且 ESR 大于 1mΩ 的陶瓷电容。大输出电容可以降低噪音并改善负载瞬态响应。图 2 显示了允许的 ESR 范围与负载电流和输出电容的关系。
放大器将以等于正电源的共模输入电压工作。然而,在此条件下,增益带宽和斜率可能会降低。当负共模电压摆动至负电源的 3V 以内时,可能会出现输入失调电压增加的情况。LF411 由齐纳参考偏置,允许在 g 4�5V 电源上正常电路工作。低于这些的电源电压可能会导致较低的增益带宽和斜率。LF411 将在整个温度范围内驱动 2k X 负载电阻至 g 10V。如果放大器被迫驱动更大的负载电流,但是,在负电压摆动上可能会出现输入失调电压增加,并最终在正向和负向摆动上达到有效电流限制。应采取预防措施,确保集成电路的电源永远不会反转极性,或者不会无意中将设备反向安装到插座中,因为无限电流通过 IC 内部产生的正向二极管产生的浪涌可能会导致内部导体熔断,从而导致设备损坏。
分流电流是在流动电池堆栈中产生的难以捉摸的效果,尽管这是内部损失的主要原因,但仍受到部分关注,直接影响效率和可操作性。现有研究用电阻器网络对其进行建模。首次,由于同源电极之间的电势差,本文对在流体电解质中移动的电荷载体进行了基础分析。将钒化学作为研究案例,用Navier-Stokes,Nernst-Planck and Cancervertice方程分析了离子V 2+,V 2+,V 3+,VO 2+,H+,HSO 4 - ,SO 4 2的导电性,扩散和对流运动。3D和2D数值实现允许分析稳态和瞬态条件。分流电流的贡献是在不同尺寸和不同负载下的堆栈中计算出来的,这表明功率损耗范围从5细胞堆栈中的0.17%到40细胞堆栈中的6.9%不等,在较低的负载电流下较高。该方法允许识别影响分流电流的主要因素,例如膜的渗透率,电极孔隙率和流通道设计。这些结果阐明了减轻分流电流的策略,以提高效率。
多端器件的等效电路模型 [1] 已被用于探索 R H (量化霍尔电阻 (QHR))测量中的负载和接触电阻效应。主要观察结果是,由于强磁场中 QHR 器件 [2] 的接触(储层)和边缘状态之间的有效串联源电阻 r s = R H /2,从霍尔电压端子抽取的电流会导致显着的负载误差。1993 年,这些原理的计量应用通过在两个或多个器件之间设计具有多个链路的电路而建立 [3]。第一个链路承载大部分电流并在每个设备上设置等势边缘,因此霍尔电压互连具有小得多的负载电流。因此,在 QHARS 网络中,负载和直流接触电阻效应可以降低到可忽略不计的水平。同样,多重连接可最大限度地减少寄生负载对单个设备阻抗测量的影响,音频范围内 QHR 标准的开发也基于这一进步。
本文专门用于光伏系统模拟。光伏系统在不同条件下运行,例如改变太阳辐照度和环境温度。在本文中对现有的光伏系统模拟方法进行了分析。开发了电力消耗系统的形式模型,其中包括光伏系统和电气存储系统。在太阳能电池板优化工具设计中使用仿真建模工具的权宜之计是通过应用最大功率跟踪方法显示的。开发的软件提供了在太阳辐射和温度强度的不同值下建立太阳能电池的电流 - 电压和高压特性的能力。电压和负载电流与太阳能电池板的操作点的电压和电流高达50%,该电压和电流使用最大功率点跟踪器设置为最佳值。该软件的体系结构扩展了基于太阳能电池板的系统模拟建模的功能。可以通过使用更复杂的算法进一步完善优化器模型块以及最大功率点跟踪算法的实现。发展是创新的,其实际实施将对国家的能源安全产生重大影响。
TMI3411 是一款 1.0MHz 恒定频率、电流模式降压转换器。它非常适合需要从单节锂离子电池获得高达 2A 的超高电流的便携式设备,同时在峰值负载条件下仍能实现超过 90% 的效率。TMI3411 还可以在 100% 占空比下运行,实现低压差操作,延长便携式系统的电池寿命,而轻负载操作可为噪声敏感应用提供非常低的输出纹波。TMI3411 可以从 2.5V 至 6V 的输入电压提供高达 2A 的输出负载电流,输出电压可以调节至低至 0.6V。高开关频率可最大限度地减小外部元件的尺寸,同时保持较低的开关损耗。内部斜率补偿设置允许设备以较小的电感值运行,以优化尺寸并提供高效的操作。TMI3411 采用 5 引脚 SOT 封装,并提供可调版本。该装置提供两种操作模式,PWM控制和PFM模式切换控制,可在更宽的负载范围内实现高效率。
摘要 近年来,电池/超级电容器 (SC) 混合储能系统 (HESS) 广泛应用于电动汽车 (EV),因为该混合系统结合了两种设备的优点。本文提出了一种电池/SC HESS 的自适应功率分配方案,以根据其存储的能量和负载电流最大化 SC 的利用率。在该方法中,采用自适应算法开发低通滤波器来计算合适的截止频率以在电池和 SC 之间分配功率需求。该方法可以调整截止频率但不改变控制系统的结构,因此不影响其原有的简单实现和稳定性特性。全面的仿真研究验证了所提出的电池/SC HESS 自适应功率分配方案的有效性,并使用 Lyapunov 方法进一步验证了其稳定性。结果表明,自适应方法比传统控制系统在运行期间电池能量吞吐量减少 20%–40% 的性能更好,并且可以根据 SC 的能量容量调整 HESS 的动态响应,进一步提高系统效率。经验证,提出的自适应功率分配方案能够延长电动汽车应用中 HESS 系统的使用寿命。
摘要 — 由于生物医学信号幅度非常低,且具有与环境噪声类似的高共模特性,因此用于这些信号的放大器应具有高 CMRR。交叉耦合放大器对差分和共模信号的负载行为导致高 CMRR,因此会强烈衰减共模信号。由于交叉耦合放大器差分增益较低,因此其负载与电流复用运算放大器相结合。在 0.18 µm CMOS 技术中,模拟并比较了具有传统共模反馈和改进负载的全差分电流复用 OTA 的最终 CMRR。模拟了它们的 CMRR 失配和工艺变化。根据模拟结果,对于相同的功耗 W 和 L,改进的交叉耦合负载电流复用具有最佳性能。在最坏情况下,其 CMRR 约为 90 dB,而总功耗在 1.8 V 电源电压下为 18 µW。带宽为 4.8 kHz,此带宽内的总输入参考噪声为 1.04 µV rms 和 0.43 µV rms(0.5 至 100 Hz),这对于本研究中考虑的 EEG 应用来说是可接受的噪声和带宽。