摘要。变形金刚在电能的分布中起着关键作用,尤其是在电子设备中。负载电阻显着影响变压器效率。本研究采用了一种实验方法,目的是评估实验数据分析和理论计算之间的一致性。The experimental setup involves testing a step-up transformer characterized by the following primary coil specifications: N p (number of turns) = 500, r p (resistance) = 2.5 Ω, L p (self-inductance) = 9 mH, and secondary coil specifications: N s (number of turns) = 1000, r s (resistance) = 9.5 Ω, L s (self-inductance) = 36 mH.载荷电阻(R)在10至500Ω的范围内变化。结果揭示了变压器效率的逐步提高,随着载荷的增加,效率高达300Ω,此后效率会下降。在降低变压器的情况下,具有与升级变体相同的规格,效率显示出类似的增强模式,载荷电阻最高为80Ω,超过它会减小。此外,渐进式变压器的根平方误差(RMSE)为0.0012,R-square(R 2)值为0.99。同样,对于降低的变压器,RMSE寄存器为0.0060,伴随着R-Square(R 2)为0.99。这些发现肯定了所采用理论在阐明变压器效率和负载抗性之间的复杂相互作用方面的特殊性。
摘要 提出了一种用于峰值电流模式 (PCM) 控制的降压型 DC-DC 转换器的精确可编程平均电感电流限制方法。利用 Gm-C 滤波器检测与电感串联的电流检测电阻上的压降。然后,通过电压-电流 (V2I) 转换器将压降转换为电流信号。转换后的电流信号叠加在误差放大器的输出上,以调节峰值电感电流。降压转换器采用 0.18 µ m BCD 工艺设计。对于 50 m Ω /25 m Ω 的检测电阻,电流限制值分别设计为 1 A/2 A。当等效负载电阻从 10 Ω 变为 2.5 Ω/1.67 Ω 时,仿真结果表明,对于 50 m Ω /25 m Ω 的检测电阻,平均电感电流分别从 500 mA 增加到 0.9 A/1.8 A。关键词:电流限制,平均电感电流反馈,Gm-C滤波器分类:集成电路(模拟)
第二级 第二级或中间级由 Q 16 、 Q 17 、 Q 13 B 和两个电阻器 R 8 和 R 9 组成。晶体管 Q 16 充当射极跟随器,从而使第二级具有高输入电阻。这最大限度地减少了输入级的负载并避免了增益损失。此外,添加具有 50kΩ 发射极电阻的 Q 16(类似于 Q 7 和 R 3 )可增加第一级的对称性,从而提高其 CMRR。晶体管 Q 17 充当共射极放大器,发射极中带有 100Ω 电阻。其负载由 pnp 电流源 Q 13 B 的高输出电阻与输出级的输入电阻并联组成(从 Q 23 的基极看)。使用晶体管电流源作为负载电阻(有源负载)可以获得高增益,而无需使用大电阻,因为大电阻会占用很大的芯片面积并需要很大的电源电压。
放大器将以等于正电源的共模输入电压工作。然而,在此条件下,增益带宽和斜率可能会降低。当负共模电压摆动至负电源的 3V 以内时,可能会出现输入失调电压增加的情况。LF411 由齐纳参考偏置,允许在 g 4�5V 电源上正常电路工作。低于这些的电源电压可能会导致较低的增益带宽和斜率。LF411 将在整个温度范围内驱动 2k X 负载电阻至 g 10V。如果放大器被迫驱动更大的负载电流,但是,在负电压摆动上可能会出现输入失调电压增加,并最终在正向和负向摆动上达到有效电流限制。应采取预防措施,确保集成电路的电源永远不会反转极性,或者不会无意中将设备反向安装到插座中,因为无限电流通过 IC 内部产生的正向二极管产生的浪涌可能会导致内部导体熔断,从而导致设备损坏。
摘要 开发了一种用于射频能量收集的高效 CMOS 整流器(采用 0.18 µ m CMOS 技术)。为了在极低输入功率条件下也能高效运行,采用自 Vth 抵消 (SVC) 和光伏 (PV) 辅助技术的有效组合实现了基于倍压器的整流器。在该整流器中,二极管连接 MOSFET 的阈值电压 (Vth) 由直流偏置电压补偿,该偏置电压不仅由片上 PV 电池产生,还由整流器本身的输出电压产生。因此,即使在低输入功率条件下,整流器也能高效运行。此外,采用了使用简单 pn 二极管的偏置电压限制器来有效调节过度的 Vth 补偿,并在宽功率范围内实现整流器的高运行效率。在输入功率为 − 15 dBm、频率为 1 GHz、输出负载电阻为 10 k Ω 和光照度为 10 mW/m 2 的情况下,射频到直流功率转换效率 (PCE) 达到 30.8%。关键词:能量收集、无线电波、光伏、功率转换效率、整流器分类:能量收集设备、电路和模块
充电电压:DC 12.6V〜13.6V余额版本产品尺寸:41*61*4毫米增强版本产品尺寸:41*55*4mm连续充电电流:最多20A说明:连续放电当前:40A最大电流:最大耗散环境(如果热量耗散环境不好 18650, 26650, polymer lithium battery), can be drilled below 170W Note: 1: Successfully start the drill requires 3 10C-20C power batteries, or 6 5C-10C power batteries (recommended power battery models: sony vtc4, vtc4A, vtc5A, vtc6) OV and 12.6V cable, use Copper wire of 3 square millimeters or more (nickel sheets cannot be used) 2:根据图严格连接0V,4.2V,8.4V,12.6V。在焊接电线时,请勿触摸板上的任何组件。不要故意短路。3:在第一次焊接电池或进行充电时,只要单个电池超过4.2V,“ 430”电阻将加热并放电(放电到约4.19V以停止加热)。如果“ 430”电阻非常热,请检查错误的线是否连接。硬件准备:准备3S 12.6V 40A锂电池保护模块,电池,电源,高电源负载电阻
充电电压:DC 12.6V〜13.6V余额版本产品尺寸:41*61*4毫米增强版本产品尺寸:41*55*4mm连续充电电流:最多20A说明:连续放电当前:40A最大电流:最大耗散环境(如果热量耗散环境不好 18650, 26650, polymer lithium battery), can be drilled below 170W Note: 1: Successfully start the drill requires 3 10C-20C power batteries, or 6 5C-10C power batteries (recommended power battery models: sony vtc4, vtc4A, vtc5A, vtc6) OV and 12.6V cable, use Copper wire of 3 square millimeters or more (nickel sheets cannot be used) 2:根据图严格连接0V,4.2V,8.4V,12.6V。在焊接电线时,请勿触摸板上的任何组件。不要故意短路。3:在第一次焊接电池或进行充电时,只要单个电池超过4.2V,“ 430”电阻将加热并放电(放电到约4.19V以停止加热)。如果“ 430”电阻非常热,请检查错误的线是否连接。硬件准备:准备3S 12.6V 40A锂电池保护模块,电池,电源,高电源负载电阻