图S6:左:在不同偏置电压处的传输功能。中心:完整计算和零偏置近似的电流 - 电压特性。右:从较大电压范围内的零偏置近似值的电流电压特性。
我们提供了一种简单而直观的理论,可以解释分子与光腔的耦合如何通过利用轻质 - 强度相互作用的固有量子行为来改变地面态化学反应性。使用最近开发的极化Fock状态代表,我们证明,由于具有偏振液体的重叠的糖尿病电子耦合的缩放,因此实现了地面电势的变化。我们的理论预测,对于质子转移模型系统,当腔频率在电子激发范围内时,可以通过光物质相互作用来修饰基态屏障高度。我们的简单理论解释了一些最近发现相同效果的计算研究。我们也表明,在光和物质的深厚耦合极限下,极化的地面和第一个激发的特征态成为Mulliken-Hush的绝热状态,后者是偶极子操作员的本征态。这项工作提供了一个简单但功能强大的观念框架,以了解分子和腔之间的强耦合如何修改基态重复性。
上下文。Venus的Co 2较厚的大气与电离层共存,该电离层主要是通过太阳能极端紫外线和软X射线光子的大气中性的电离来形成的。尽管进行了广泛的建模工作,但对电子分布的重现得很好,但我们注意到与先前的研究有关的两个主要缺点。生产和库仑相互作用的影响对于揭示金星电离层的结构和组成至关重要。目标。我们首次评估了质子化物种对时代金星电离层结构的作用。我们还评估了离子库仑碰撞的作用,在许多现有模型中被忽略了。方法。专注于预计质子化效果更突出的太阳最小条件,我们为时代的维纳西亚电离层建立了一个详细的一维光化学模型,并结合了50个以上的离子和中性物种(其中17种是质子化的物种),以及最彻底的化学网络。我们包括离子中性和离子库仑碰撞。光电子影响过程是通过两流动力学模型实现的。结果。我们的模型可以很好地重现观察到的电子分布。该模型表明质子化倾向于通过一系列质子转移反应沿着低至高质子相关的质子转移反应来分散电离流到更多的通道中。结论。另外,在高海拔地区,质子化近2倍的质子化可以增强O + 2的分布,在该系数通过O和OH +之间的反应有效产生。我们发现,库仑碰撞不仅直接通过抑制离子扩散,而且通过修饰离子化学来影响顶部的金星电离层。可以根据库仑碰撞的作用来区分两个离子基:一个在高海拔地区优先生产并积聚在顶部离子室中的组,该组应与在低海拔地区优先生产的另一组进行比较,而在上层离子层中则耗尽。质子化和库仑碰撞都对顶部的金星电离层产生了明显的影响,这说明了这项研究和早期计算之间模型离子分布的许多显着差异。
质子转移使自然界和人造技术中的重要过程成为可能。然而,控制质子传导和利用生物材料制造设备仍然是一项挑战。更困难的是设计基于蛋白质的块状材料,没有任何功能性起始支架供进一步优化。在这里,我们展示了质子传导蛋白质材料的合理设计,超过了已报道的蛋白质系统。通过探索从内在无序线圈到超荷电纳米桶到包含蛋白质超荷电多肽嵌合体的分层蜘蛛片的各种序列,一步步进化出富含羧酸的结构。后一种材料的特点是相互连接的片纳米域,其表面由羧酸基团修饰,形成自支撑膜并允许在水合状态下进行质子传导。在 RH = 90% 时,膜显示出 18.5 ± 5 mS/cm 的非凡质子电导率,比其他蛋白质装置高一个数量级。这种设计范例为连接人工和生物系统的生物质子装置制造提供了巨大的潜力。
增加的人为活动和自然资源的消费导致化石燃料的下降。要解决不断增长的能源需求,需要一种可持续和环保能源的来源。微生物燃料电池(MFC)代表生物电性产生的最新进步。这项技术利用微生物代谢有机基材释放的电子,将它们从阳极通过外部电路转移到阴极以产生能量。在我们的研究中,我们研究了有机底物牛粪的功效,作为在生物电力产生微生物的情况下的电子供体。在阳极和阴极腔之间采用了盐桥,以促进质子转移。我们的发现表明,以这种方式构建的MFC可以有效地从有机废物中产生电力,从而为正在进行的全球能源危机提供潜在的解决方案。在5天的时间内监测了该基材的实验读数,根据产生的电压评估性能。生成参数的最高记录值为1.31mv。这些双腔室微生物燃料电池是一种未来能源解决方案的有前途的技术。
这项研究提出了以下假设:糖酵解中三氧磷酸异构酶(TIM)是一种量子逻辑门。利用量子力学,我们将蒂姆的二羟基丙酮(DHAP)催化转化为3-磷酸甘油醛(G3P)作为量子操作,参与精确的质子转移。为了探索这种量子行为的更广泛的含义,我们开发了一种量子模型,以评估钠 - 葡萄糖共转运蛋白2抑制剂(SGLT2I)对甲基聚糖形成的影响,这是一种与先进的糖化终极产物相关的有毒副产物(AGES)。我们的模型预测,SGLT2I可以通过降低中间形成的可能性来减少甲基甘氨酸,从而为在临床环境中观察到的保护作用提供了一种机制,包括糖尿病,肾病和心力衰竭的血管和肾脏性。通过将蒂姆重新构图为量子逻辑门,本研究不仅挑战了酶促功能的传统观点,而且为量子生物学开辟了新的途径,对代谢性疾病研究和药物开发的未来产生了深远的影响。此外,考虑到由于量子隧道效率低下而导致的甲基乙二醇,可以假设一种新的“ Noxa patogena”,将其作用解释为量子干扰。
5-C]二元溶剂混合物中的吡啶。主题会议关于光谱法的最新趋势会议,印度泰米尔纳德邦印度理工学院,印度泰米尔纳德邦,2014年6月20日至21日。(选择为最佳口头表现)。5)S.K。Behera , A. Karak and G. Krishnamoorthy, Photophysics of 2-(4'-Amino-2'-hydroxyphenyl)- 1H - imidazo-[4,5-c]pyridine and Its Analogues: Intramolecular Charge Transfer Suprresed by Intramolecular Proton Transfer , 8 th Asian Photochemistry Conference (APC-2014), IISER- Niist(CISR)Trivandrum,喀拉拉邦,在印度Photosciences研究学会的主持下,2014年11月9日至13日,印度喀拉拉邦Kovalam。6)S。K. Behera和G. Krishnamoorthy,分子内电荷转移,由分子内质子转移,研究结论,由学生学术委员会(SAB)博士理事会(SAB)组织,IIT Guwahati,IIT Guwahati,23Rd-26th,2015年3月23日。7) S. K. Behera and G. Krishnamoorthy, Role of Protic Solvents in the Twisted Intramolecular Charge Transfer of 2-(4'- N , N -dimethylaminophenyl)imidazo[4,5-c]pyridine: A Relay Proton Transfer , ChemConvene, Department Chemistry, IIT Guwahati, 8 th April -2015.8)S。K. Behera和G. Krishnamoorthy,2-(4'- N,N,N--二甲基氨基)苯基胺[4,5-C]吡啶在墨西哥cuc虫-7-ril cavity,19 Crsi National Cavity in Cucurbit-7-ril cavity,CRSI NSC-NSC-116年7月7日,北部的BBENF,2016年7月7日。 013,印度西孟加拉邦。(被选为最佳口头表现)9)S。K. Behera,新的2-(2'-羟基苯基)苯咪唑衍生物的新2-(2'-羟基苯基)衍生物:一项合并的实验和理论研究,印度国家国民发展科学与技术研讨会,印度科学会议局,印度科学会议局,布巴内斯瓦尔分会,Kiit Chaplion,Kiit University,Kiit University,Kiit University,Kiit University,Kiit University,12-13,2016年12月12日,2016年12月。
摘要:将分子耦合到光腔内的量化辐射场已显示出巨大的前景,可以改变化学反应性。在这项工作中,我们表明,可以通过将反应与腔反应强,产生正骨 - 或para取代的产物而不是元产品来从根本上改变硝基苯的基础选择性。重要的是,这些是从腔体以外的同一反应中获得的产物。最近开发的AB从头算法用于理论上计算阳离子卫星中间体的相对能量,这表明所有产品的动力学优选的溴化位点。对腔内和外部的蜂巢中间体的地下电子密度进行分析,我们演示了强耦合如何引起分子电荷分布的重组,这又导致不同的溴化位点直接取决于空腔条件。总体而言,此处介绍的结果可用于了解腔体从机械的角度使用对基态化学反应性的变化,并将前沿理论模拟与最先进但现实的实验腔条件直接连接。■将耦合分子偶联到光腔内的量化辐射场中产生一组光子 - 物质杂种态,称为polaritons。这些极化状态通过调整物质的特性以及光子的特性来以一般和便捷的方式改变化学反应性。23请注意,尽管将极化子用于新的化学的理论预测广泛地,但1已在实验上证明的很大程度上与北极星修饰的反应动力学有关。例如,富尔吉德或类似分子的电子激发态之间的集体耦合以及光腔内量化的光子模式,所谓的电子强耦合(ESC),以增强或抑制光化异构化反应。2,3在另一个示例中,振动激发共同与微腔的光子激发(通常称为振动强耦合(VSC))共同耦合,导致化学动力学可以增强4、5或抑制。6-8在这两个集体耦合方案中,反应的动力学发生了变化,但重要的是,与腔体以外的相同反应相比,没有生成新的产品。最近的理论研究1,9表明,可以通过将分子的电子状态与空腔光子模式耦合来显着修改分子系统的基态。10-20,特别是,已经表明,腔体可以修改Diels- alder反应的内部/EXO选择性,21,22修改了地面质子转移反应屏障和驱动力15,16,并选择性地控制点击反应的乘积。
*对应作者的隶属关系1 Laboratoire des Sciences du Climat et de l'Orvironnement,Cea-Cnrs-Uvsq,IPSL,IPSL,IPSL,IPSL,UniversitéParis-Saclay,91191 Gif-Sur-Yvette,France 2 Center 2 Recherche Surche sur La Compantervation,cnrs:cnrs:cnrs:usr3224,75 005法国巴黎3巴黎大学,5街托马斯·曼(Rue Thomas Mann),75013法国4个中心4个国家中心,duCinéma等人的ImageAnimée,7 bis Rue Alexandre Turpault 78390 Bois d'Arcy,France Abstract actract actract actract actract(CA)的次数替换为20世纪的福特(CA),该效果是临时的,该效率是在20世纪的第二季度,又是一张途中的照片。硝酸纤维素。随着时间的流逝,水解发生,CA的脱乙酰基化产生乙酸(AA),这是膜档案中的一种众所周知的现象,即所谓的“醋综合征”。然而,除了AA外,可能还存在其他瓦解化合物,很少有研究专门研究其定量和定性评估。质子转移反应“飞行时间”质谱仪(PTR-TOF-MS)结合了高灵敏度和高质量分辨率,用于实时检测多种挥发性有机化合物(VOC)。该技术用于评估来自20世纪下半叶的41张膜的空气组成,该薄膜显示出不同的降解水平(使用A-DStrips®:0级至1.5级排名)。检测到了100多个VOC,它们的分布因一部电影而异。AA是27个电影罐中最丰富的VOC。在其他情况下,它是N,N二甲基甲酰胺(DMF),丁醇,乙醛丙酮或甲酸。1。本研究表明,PTR-MS是实时监测的强大工具,并且通过对其VOC排放的定量和定性分析在博物馆环境中进行降解,并且可以将其用于层次群集分析分类。Keywords : cellulose acetate, VOCs, PTR-ToF-MS, movie film, vinegar syndrome Highlights - PTR-ToF-MS was used for the first time for real-time full qualitative and quantitative detection of VOCs released by 41 historical movie films on a cellulose acetate base - Around 100 different organic ions were attributed to VOCs emitted from films - Acetic acid, acetaldehyde,丙酮,丁醇,DMF,甲酸,甲醇,丙酸主导了VOC混合物组成 - 超过41膜,乙酸是27胶卷的最丰富的VOC,丁醇为6,丁醇为6,DMF,用于3张甲酸,用于3张甲酸,适用于2,2,乙醛,2,acetaldeyde,2,acte> actone for 1。引言,研究的上下文•醋酸纤维素缓解纤维素(CA)自20世纪下半叶以来已被广泛使用,作为照片和电影膜的透明基础,以取代易燃性硝酸纤维素。首先被认为是具有良好的终身期望值,它在1980年代已经意识到其保质期要短得多,并且根据气候环境的不同,在不到30年的时间里,有形退化可能会发生(1)。进行水解发生,CA的脱乙酰基化产生乙酸(AA),这是膜档案中众所周知的现象,所谓的“醋综合征”。该过程是自催化的,因为乙酸产生的速度会进一步降解。互惠和薄膜失真也可能导致增塑剂的损失。CA基础收缩率在十年内可能达到0.7%,在极端情况下最多可达到10%(2)。AA浓度在胶片卷轴中积聚并增加了膜降解水平,后者通常是