•沥青质含量确定(ASTM D 6560)•高压条件下的沥青质沉积•沥青质起始点(上和/或下部)•沥青质抑制剂评估等。•沥青沉淀的热力学建模
图 1 - 3 种不同的高度/海拔测量选项 ............................................................................................. 8 图 2 - 无人机“起始点”规范的影响 ............................................................................................. 10 图 3 - 基于 UTM 的校准垂直分离计算 Δh ............................................................................................. 23 图 4 - UTM 收到的气压-气压高度........................................................................... 24 图 5 - UTM 接收到的气压-GNSS 高度 .............................................................................. 24 图 6 - UTM 接收到的 GNSS-GNSS 高度 .............................................................................. 25
作为其改进船舶船体结构的研究计划的一部分,船舶结构委员会正在巴特尔纪念研究所赞助一个项目,以评估焊缝中可能存在的缺陷对船舶脆性行为的影响。随函附上该项目的第一份进度报告 SSC-863,题为“评估焊缝缺陷作为脆性断裂的起始点”,作者为 DO C. Martin、R. S. Ryan 和 p. J* Riemel=
观察到 160°C 的温度会略微降低疲劳寿命,这可能与马氏体时效钢的强度在 160°C 时略微降低有关 []。此外,正如预期的那样,带有机加工通道的样品在检查前没有破损样品,因此效果最佳。垂直样品首先断裂,而倾斜和水平样品的粗糙度较高。断裂分析表明,在部件核心和轮廓之间的垂直样品上有许多大于 100 微米的缺陷(图 12a 和 b)。这些缺陷在水平和 45° 样品上也可见,但数量较少。同样的缺陷也在显微照片上可见(图 12c)。因此,即使粗糙度和夹杂物也存在,起始点的根本原因是缺陷的存在
本程序的实验部分考虑了喷砂程序变化对表面粗糙度、残余应力和疲劳寿命的影响。研究发现,在先前喷丸处理过的表面上进行的喷砂程序使表面进一步粗糙,但不会降低所研究材料淬火和回火条件下的压缩残余应力的大小。由于喷丸过程在近表面位置引起高残余压缩应力,因此在加工过程中喷丸处理的样品的疲劳寿命比在地面条件下测试的样品长得多。在本研究中发现,喷砂程序对喷丸样品的疲劳寿命的任何影响都很小。具体而言,值得注意的是,疲劳裂纹起始点的位置从表面位置(在非常高的施加应力下)移动到亚表面位置(在较低的
本报告介绍了为模拟船体用钢的全尺寸性能而进行的宽板拉伸试验的结果。首先通过在新开发的宽板试验机上进行的一系列十九项试验,获得了有关宽钢板快速断裂的起始和扩展的信息。试验材料是 3/4 英寸厚的压力容器钢 ASTM A212 级 B。然后将这些信息和开发的技术应用于使用厚度为 1-3/8 英寸的 ABS C 级钢进行的总共十八项试验。所有样品均为 10 英尺宽,其中 3 个样品纵向加固。试验温度范围从 -100°F 到室温环境 +75”F。疲劳裂纹或脆性珠被用作裂纹起始点,并引入了较大的残余应力。
在毛利语中,“ranga”一词在“rangahau”一词中表达时,意思是“举起”、“铸造”、“连根拔起”或“启动”。同样,“hau”一词与“ranga”组合时,可以表示在国外被听到、报告、发表或值得注意且杰出的信息。因此,“rangahau”一词意味着不同的含义:毛利人有多种认识、存在和进行 rangahau 的方式,例如 Kaupapa Māori 和 Mātauranga Māori,以及特定探索或研究工作的起始点。在 Te Kunenga Ki Pūrehuroa Massey 大学,我们采用“rangahau”一词来用毛利语表达我们研究的理念和本质。 Te Pou Rangahau,即研究支柱,也是大学四大战略支柱之一的名称,为我们的许多学术努力提供中心焦点。
增材制造的兴起迅速扩大了拓扑设计和低生产能力的灵活性。激光粉末床熔合中逐层沉积的一个不幸副产品是引入了大缺陷,大大降低了最终部件的机械性能。打印和检查方法严重依赖机构知识,导致材料和能源浪费,限制了增材制造技术的采用。然而,工艺参数空间的许多改进减少了缺陷的数量。气孔虽然尺寸很小,但仍然存在,并且特别不利于疲劳寿命,因为它是优先裂纹起始点。我们的工作重点是了解这些工艺引起的缺陷在增材制造金属中的作用,特别是它们对机械行为的影响。利用这些见解,我们探索了传统和非传统方法来增强增材制造的组件。这些方法是继续认证它们在关键条件下的使用所必需的。演讲者简介:
左发动机非包容性故障是由高压压缩机 (HPC) 第 8 级圆盘中的疲劳裂纹引起的。疲劳裂纹始于圆盘腹板的后表面,并穿过腹板并沿圆周方向发展。断裂区域在腹板后表面附近具有晶间外观,在远离起始点处具有穿晶外观。穿晶区域表现出与低周疲劳裂纹扩展一致的条纹。 GE 在预测第 8 级盘后腹板的低周疲劳裂纹萌生寿命时考虑了最坏情况(最高应力和温度以及最低材料特性),并发现其低周疲劳萌生寿命约为 29,800 次。(疲劳断裂可分为起始阶段和扩展阶段。在起始阶段,材料结构由于周期性载荷而发生变化,但未形成裂纹。最终形成裂纹并开始增长,表明扩展阶段开始。FAA 咨询通告 33.70-01 使用了该概念
摘要:透明导电材料 (TCM) 已广泛应用于触摸屏、平板显示器和薄膜太阳能电池等光电应用。TCM 的这些应用目前以 n 型掺杂氧化物为主。由于空穴迁移率低或 p 型掺杂瓶颈,高性能 p 型 TCM 仍然缺乏,这阻碍了高效的器件设计和透明电子等新应用。在这里,基于第一性原理计算,我们提出硫族化物钙钛矿 YScS 3 作为一种有前途的 p 型 TCM。根据我们的计算,它的光吸收起始点高于 3 eV,这使得它对可见光透明。它的空穴电导率有效质量为 0.48 m 0 ,是 p 型 TCM 中最小的之一,表明空穴迁移率增强。它可以通过阳离子位点上的 II 族元素掺杂为 p 型,所有这些都会产生浅受体。结合这些特性,YScS 3 有望提高 p 型 TCM 相对于 n 型 TCM 的性能。