进行了风洞试验,以表征 RAE 2822 超临界翼型并实施主动流动控制技术。试验在各种亚音速和跨音速马赫数和攻角下进行。沿四分之一弦轴连接到翼型端部的两个称重传感器用于量化作用在翼型上的气动力。跨音速翼型已集成,控制技术已在佛罗里达州立大学 Polysonic 风洞中成功实施。本文介绍了一些初步实验结果,并描述了实施过程中获得的经验教训。油流可视化显示翼型吸力面上存在角涡,下表面存在楔形图案,这表明局部过渡流和湍流区域的组合,没有冲击或冲击非常弱。基准翼型上测量的升力系数远低于基于文献的估计值。这些结果表明,测试的翼型需要修改其纵横比和横截面积以适应设施。基于同流喷射的主动流动控制技术在改善气动性能方面显示出良好的前景。
摘要。由于降低温室气体排放和提供多种电力供应的需求,世界各地的发电方式正在发生巨大变化。储能技术被认为是应对这些挑战的基础技术,具有巨大的潜力。本文介绍了压缩空气储能 (CAES) 的当前发展和可行性,并为即将到来的技术进步提供了启示。本文介绍了 CAES 的各种主要类别(高级绝热 CAES、液态空气储能和超临界 CAES)。与其他储能技术相比,CAES 被认为是一种新鲜绿色的储能技术,具有高容量、高功率等级和长期存储的独特优势,以及低功率密度、高运输损耗和地质限制的缺点。CAES 被认为是一种有前途的技术,能够应用于可再生能源生产、热电联产、分布式能源和微电网系统。它也被认为将来会与其他技术相结合,例如可再生能源、燃气轮机、固体氧化物燃料电池和其他系统。
摘要:已经开发了一种新型的压缩空气存储(CAES)系统,该系统与基于其进食水热系统的煤炭功率厂创新。在混合设计中,将CAES系统的压缩热转移到煤炭发电厂的饲料中,并在膨胀机被从煤炭发电厂采集的饲料加热之前被压缩空气。此外,扩张器的废气被用来加热煤炭发电厂的部分进食水。通过建议的集成,可以消除常规CAES系统的热量储能设备,并且可以改善CAES系统的性能。基于350兆瓦的超临界煤炭发电厂,对拟议的概念进行了热力学评估,结果表明,新CAES系统的往返效率和往返效率可以分别达到64.08%和70.01%。此外,还进行了灵敏度分析,以检查环境温度,空中压力,扩张器入口温度和煤炭功率负载对CAES系统性能的影响。上述工作证明,在各种条件下,新颖的设计有效,为CAES技术的发展提供了重要的见解。
在超热岩系统中,水被注入岩石温度超过 400°C 的深处,然后以超临界或过热水的形式返回地面,为发电机提供动力。全球已有多个研发 (R&D) 项目钻探了超热岩,并开始开发在这些极端高温和高压条件下运行的方法。虽然超热资源尚未用于发电,但其高能量潜力已得到广泛认可。冰岛深层钻探项目 (IDDP) 钻探的一口试验井的证据表明,一口井可产生约 36 兆瓦 (MW) 的能量,约为当今典型的 3-5 兆瓦商业地热井的五到十倍。根据 CATF 的初步分析,如果能够以合理的开发成本在干岩中生产出如此大量的能量,超热岩可以与当今每兆瓦时 (MWh) 20-35 美元的天然气工厂相媲美。
评估CO 2注射的可行性需要考虑对注射的短期和长期压力反应。接收形成中的压力是CO 2注射速率,地层几何形状,存储参数和地层渗透性的函数。在评估长期可行性时,由于该参数在几个数量级上,即使在相似的岩性中,渗透率的空间平均液压特性通常是最不确定的变量。由于压力传播不受流体类型的限制,因此超临界CO 2和盐水之间存在压力连续性。在注射井附近增加压力可以通过地下水传播,地下水几乎是不可压缩的,并且导致压力的空中和垂直程度增加,比CO 2羽流大得多。所产生的压力干扰会为每个CCS项目的注入性和存储容量产生不确定性,因为使用相同的区域含水层有许多轮毂。
汽车行业被迫创新其方法,以应对汽车需求波动、监管框架严格和快速技术进步等挑战。汽车企业是一个复杂的系统,其特点是众多利益相关者之间存在动态、非线性的相互作用,这对其运营效率和整体绩效至关重要。因此,我们利用网络科学的分析工具对一家全球汽车公司的质量部门进行了诊断评估。通过检查利益相关者之间的动态、非线性相互作用,我们为质量部门及其问题解决部门开发了一个网络拓扑,结果显示两个网络都很稀疏,并且在超临界状态下表现出随机行为;也就是说,节点(代理)之间的互连(非线性相互作用)明显不足。因此,质量分析师及其主管无法及时响应客户报告的缺陷。基于这些见解,我们主张采用元方法论 SSM+VSM+MA 来导航和阐明此类复杂系统,旨在增加网络内的互连密度,以加快
摘要我们模拟了用魔法角度扭曲的两个磁性对称性的磁性模式之间的顺磁颗粒的运动。所得的莫里图模式在磁性电位中形成平坦的通道,沿磁电势可以通过大于临界值的数量级的漂移力传输胶体颗粒。胶体运输也可以通过均匀外部场的调制环随时间变化的方向而变化,在这种情况下,传输受到拓扑保护。漂移和拓扑运输竞争或合作产生了几种运输模式。合作使在漂移力上移动颗粒比临界力弱。超临界漂移迫使运输模式之间的竞争结果,例如在整数步骤中粒子的平均速度和次谐反应的发生中增加。我们用平均粒子速度的动态相图来表征系统,这是拓扑传输方向的函数和漂移力的大小。
摘要该项目调查了新型的橡胶回收化学品,以将垃圾变成有价值的环境和经济可持续性。主要目标是评估创新溶剂,基于酶的过程以及回收效率和产品价值的催化方法。该研究使用来自同行评审的文献,行业报告和案例研究中的辅助数据来分析这些技术的功效和优势。主要发现表明,使用离子液体和超临界流体提高了溶解效率,基于酶的方法破坏了硫交联,催化过程提供了有利的副产品。这些技术突破提供了创新的聚合物,建筑材料和专业物品,同时减少了垃圾填埋场中处置的垃圾数量和减少排放。尽管有这些发展,但仍需要解决有关高科技成本和难度扩大的持续挑战。本文建议更多的研究资金,回收利用激励措施和法律框架,以鼓励复杂的程序。必须解决这些政策后果,以提高回收利用并创造循环经济。关键字:橡胶回收,废物转化,绿色化学,化学创新,橡皮废物管理,资源回收
湿度是多晶硅微机械摩擦表面磨损的一个重要因素。我们证明,非常低的湿度会导致非常高的磨损,而可靠性不会发生显著变化。我们表明,产生的磨损碎片的量是空气环境中湿度的函数。随着湿度降低,产生的磨损碎片增加。对于较高的湿度水平,表面氢氧化物的形成可能起到润滑剂的作用。主要故障机制已被确定为磨损。磨损碎片已被确定为非晶态氧化硅。在低湿度水平下观察到的大碎片(长度约为 1 微米)也是非晶态氧化硅。使用透射电子显微镜 (TEM),我们观察到磨损碎片形成球形和棒状。我们比较了两种表面处理工艺:氟化硅烷链 (FTS) 和超临界 CO 2 干燥 (SCCO 2 )。在两种湿度水平下,使用 SCCO 2 工艺的微型发动机的可靠性低于使用 FTS 工艺发布的微型发动机。
该技术是独一无二的:HTL提供了有利的能量平衡,与其他废物到能量技术相比,使用较少的能量输入来产生高能量输出的生物夸张。此外,HTL有效地处理湿有机材料,从而避免了干燥原料或使用超临界条件的高能量需求。与热解和气化相比,这显着降低了能源消耗,这通常需要预先干燥和较高的操作温度(> 500°C)。htl在将湿生物量转化为生物蛋白酶时表明,能量回收效率高达60%,这意味着生产的生物蛋白能的能量含量明显大于加工所需的能量。这种高能源投资回报率(EROI)部分是由于HTL有效地将生物质转化为能量密集的碳氢化合物,与其他方法不同,可以将其直接改进到运输燃料中。因此,HTL提出了一种实用,节能的途径,将有机废物转化为可再生燃料,从而提高了其作为一种可持续和可扩展的废物技术的吸引力。