B41.002:高 Q 值超导谐振器高电阻率硅晶片低温损耗角正切测量 B57.002:超导 Nb 薄膜中亚间隙准粒子散射和耗散 B57.008:Nb 超导射频腔的电磁响应 B57.010:用于高 Q 值谐振腔的高纯铌超导态氢化物的非平凡行为 B57.012:轴子搜索的可行性研究:Nb SRF 腔中的非线性研究 D37.002:基于三维微波腔的微波光量子转导 D39.013:带有级联低温固态热泵的量子阱子带简并制冷 D40.008:基准测试方八边形晶格 Kitaev 模型的 VQE D41.003:用于量子计算的 Nb 谐振器中氧化铌退火的原位透射电子显微镜研究 F36.005:识别超导量子比特系统中缺陷和界面处的退相干源 F36.006:使用双音光谱理解和减轻超导射频 (SRF) 腔中的损耗 F36.007:通过 HT 相界分析优化用于量子器件的 Nb 超导薄膜 F36.008:循环:超导量子比特的多机构表征 F36.010:铌射频腔的 Nb/空气界面的原子尺度研究 K29.002:超导量子材料与系统 (SQMS) – 新的 DOE 国家量子信息科学研究中心M41.009:可调谐 transmon 量子比特的长期能量弛豫动力学作为损耗计量工具 N27.006:超导量子材料与系统 (SQMS) 研究中心的量子信息科学生态系统工作 Q71.007:高磁场中的超导材料在高能物理量子传感中的应用 Q37.005:多模玻色子系统量子启发式的数值门合成 S38.003:基于微米级约瑟夫森结的约瑟夫森参量放大器的制造和特性 S72.009:探究低温真空烘烤对超导铌 3-D 谐振器光子寿命的作用 T00.106:铌硅化物纳米膜的稳定性、金属性和磁性 T00.119:不同 RRR 值的铌膜的特性低温 T72.005:单个纳米结处异质偶极场和电荷散射的太赫兹纳米成像 W40.006:量子芝诺效应对两能级系统的动态解耦 W34.013:3D SRF QPU 的潜在多模架构探索 Y34.008:高相干性 3D SRF 量子比特架构的进展 Y40.009:理解和减轻超导量子比特中 TLS 引起的高阶退相干
西里斯技术大学(1),卢布林技术大学(2)OrcID:1。0000-0002-4279-0472; 2。0000-0003-0850-7108 doi:10.15199/48.2024.05.43在电气和能量公路图摘要中开发超导率应用的波动性。基于电流领域独特特性和磁场影响的材料的超导技术在电流和能源应用领域具有广泛发展的机会。超导性虽然已有110多年的历史,但仍需要一种战略性且长期的方法来实施这种先进但对操作条件,技术的敏感。文章概述了电气工程领域的超导性发展的路线图,这是波兰科学院电气工程委员会材料和电力技术部门的一部分。摘要。超导技术基于在运输电流范围内具有独特特性的材料,并且与磁场的交互式具有在电气和能源应用领域进行视频开发的机会。超导性虽然已有110多年的历史,但仍需要一种战略性和长期的方法来实施这一先进的,但对操作条件,技术也敏感。本文概述了电气工程领域发展超导性的路线图,这是波兰科学院电气技术委员会电子技术材料和技术部门工作的一部分。(超导在电力和动力工程中的应用的观点 - 路线图)。关键字:超导性,路线图,电力技术应用,可持续发展。关键字:超导性,路线图,电力技术应用,可持续发展。20世纪初在科学领域的历史概述有一系列重要的发现和科学成就。在1908年,HEL首次凝结了,1911年,在Kriogeniki地区的研究中,发现了汞中超导的现象[1]。这种现象虽然很有趣,但由于在极低的温度下仅在一小组材料中发生材料,因此在技术中很难使用。超导性领域的进一步发现相对较少。在发现后的20年中,观察到了另一个重要的特性,即理想的Diamagnetism。这种现象已经扩大了过量应用的潜在应用范围,以全新的磁相互作用领域。超导性的里程碑是1962年的发现,即在遵守现象的半个多世纪之后,约瑟夫森的隧道效应,后来不久,基于它的鱿鱼量子检测器。这一发现为电子,量子技术和计量学方面开辟了广泛的超导应用[2]。通过引入历史大纲,不可能不提到超导材料开发的进展。材料技术的突破发生在1986年,当时发现了HTS高温超导性。已有70多年的历史了,这种现象仅在某些金属(主要是水星,铅和NIOB)以及金属脚上才知道,在该金属中,最广泛的应用区域在其中发现了Niobu的脚,并带有锡和钛。这从已经在液氮的沸点上实现的超导电工的发展产生了冲动。在21世纪初,Diborek镁加入了密集型材料测试的区域,尽管超导性温度相当低(39 K),但其特征是有利的操作特性。最新研究涉及基于铁和在非常高压下(数百GPA的顺序)的材料的超导体,但这些材料尚未发现实际应用。
bcs理论:探索其在高温超导体中的基本原理和挑战Bardeen-Cooper-Schrieffer(BCS)理论是凝聚态物理学的一个关键概念,为自1957年以来提供了超导性的显微镜解释。这种现象涉及在临界阈值以下的温度下进行电力无电的材料。BCS理论的关键在于库珀对的形成,尽管它们是自然的排斥,但它们是一对电子。在低温下,这种配对是通过声子介导的吸引力在超导体的晶格结构中促进的。基态和首先激发状态之间的能量差距在维持超导性中起着至关重要的作用。BCS理论在各个领域都具有深远的影响,包括使用MRI机,粒子加速器和量子计算的医学成像。它的影响超出了对核物理,天体物理学和中子星研究的超导性,赢得了创作者约翰·巴丁(John Bardeen),莱昂·库珀(Leon Cooper)和罗伯特·施里弗(Robert Schrieffer),1972年诺贝尔物理学奖。然而,BCS理论面临着在1980年代发现的高温超导体的挑战。这些材料在温度下表现出超导性能,远远高于BCS理论的预测,这表明了另一种机制。研究人员正在探索理论,例如BCS-BEC交叉和磁波动,以了解这些现象。非常规超导体由于其不同的对称特性而构成挑战。这导致了新的理论模型的发展,这些模型试图扩展或补充原始的BCS框架。超导性的应用导致了MRI和粒子加速器以外的技术进步,包括材料科学方面的重大发展。bcs理论是理解超导性的基本框架,尽管局限性地解释了高温和非常规的超导性,但仍对其性质和指导技术创新提供了深刻的见解。该理论将超导性描述为由cooper Pairs Pairs Pairs的核物理学引起的微观效应。Bardeen,Cooper和Schrieffer于1957年提出了BCS理论,于1972年在1972年获得了诺贝尔物理学奖。在1950年代中期,超导性的势头取得了进展,从1948年的1948年论文提出的一致性是由于现象学方程而提出的一致性。温度和压力具有显着的关系,温度受压力变化的强烈影响。虽然BCS理论被广泛接受为超导性的基本解释,但人们认为其他因素正在发挥作用,有助于这种现象。这些潜在的机制尚未完全理解,甚至可能在低温下控制某些材料的行为。在极低的温度下,费米表面附近的电子变得不稳定,从而形成了库珀对。在常规超导体中,这种吸引力通常归因于电子 - 武器相互作用。这种现象首先是由库珀观察到的,他证明了结合是在有吸引力的潜力的情况下发生的,无论其强度如何。相比之下,BCS理论仅要求潜在具有吸引力,而无需指定其起源。该框架将超导性解释为库珀对凝结产生的宏观效应,库珀对表现出了一些玻色子性能。在足够低的温度下,这些对可以形成大型的玻色网凝结物。通过使用Bogoliubov变换,尼古拉·博格洛博夫(Nikolay Bogolyubov)也独立地开发了超导性的概念。在许多情况下,通过与振动晶体晶格(Phonons)的相互作用,间接引起配对所需的电子之间的有吸引力的电子相互作用。此过程涉及一个吸引晶格中附近正电荷的电子,导致另一个电子移入较高的正电荷密度区域。随着这些电子的相关性,它们会形成高度集体的冷凝物。打破一对所需的能量与超导体内所有对中的所有对所需的能量密切相关,从而使外力更难破坏配对。这种集体行为对于理解超导性至关重要,因为它使电子能够抵抗外部影响并保持通过超导体的恒定流动。BCS理论从假设电子之间的相互作用的假设开始,这可以克服库仑排斥。高温超导性的行为很复杂,尚未完全理解。虽然这种吸引力通常是间接的,这是由电子晶格耦合引起的,但基本机制对于理解理论的结果并不是至关重要的。实际上,在没有这种相互作用的系统中观察到了库珀对,例如同质磁场下的费米亚的超速气体。bcs理论提供了金属中量子力学多体状态的近似,从而通过有吸引力的相互作用形成了库珀对。在正常状态下,电子独立移动;但是,在BCS状态下,由于吸引力的潜力降低,它们被绑定在一起。形式主义是基于波函数的变异ansatz,后来证明在对的密集极限中是精确的。尽管取得了重大进展,但稀释和致密政权之间的跨界仍然是一个空旷的问题,吸引了超低气体领域的关注。BCS理论的关键方面包括带隙,临界温度和同位素对超导性的影响的证据。测量值,例如临界温度附近的热容量的指数增加支持超导材料中能量带镜的存在。随着温度升高的结合能的降低表明电子与晶格之间的相互作用逐渐减弱。必须通过改变所有其他对的能量来打破一个能量的差距。与普通金属不同,在正常金属中,电子状态可以随着少量的添加能量而变化,当超导性停止时,该能隙在过渡温度下消失。BCS理论提供了表达式,以表明差距在费米水平上以吸引力和单粒子密度的强度生长。它还解释了当材料进入超导状态时状态的密度如何变化,而在费米水平上没有电子状态。在隧道实验和超导体的微波反射中,最直接观察到了这种能隙。BCS理论预测了能量差距对温度的依赖性,包括其在零温度下的通用值。在1950年,两个独立的小组在使用不同的汞同位素时发现了超导性的同位素效应。这一发现很重要,因为它揭示了同位素的选择可能会影响材料的电性能和晶格振动的频率。同位素效应表明,超导性与晶格的振动之间的联系,后来成为BCS理论的关键组成部分。由其中一个组进行的Little -Parks实验提供了早期的迹象,表明库珀配对在超导性中的重要性。通过对二吡啶镁等材料等材料的研究进一步探讨了这一原理,该材料被认为是BCS超导体。BCS理论发展中的关键里程碑包括John Bardeen,Leon Cooper和John Schrieffer的作品,后者发表了有关库珀对中电子超导性显微镜理论和电子结合能的论文。他们的工作为我们理解超导性及其与晶格振动的关系奠定了基础。后来的发现,例如Bednorz和Müller在1986年的发现,揭示了某些材料中高温超导性的潜力。最近,研究继续探索这种现象,并在2011年报告了值得注意的发现。BCS理论是理解超导性的基石,它源于W. A.和Parks R.D.在1962年发表的超导缸中量子周期性的观察。这一理论是由莱昂·库珀(Leon Cooper),约翰·巴丁(John Bardeen)和J.R. Schrieffer在1950年代后期的《绑定电子对的开创性论文and syproscopic理论》中进一步开发的。他们的工作为理解某些材料在比温度以下时如何表现出零电阻的基础奠定了基础。Schrieffer的书《超导性理论》(1964)以及其他文本,例如廷克汉姆(Tinkham)的“超导性概论”和de gennes的“金属和合金的超导性”,提供了对BCS理论的全面解释。该理论已被广泛接受,并且仍然是研究的主题,其应用在包括量子材料和超导体 - 绝缘体跃迁在内的各个领域。对该主题的著名作品的引用包括库珀的“堕落的费米气体中的绑定电子对”,巴尔丁的“超导性显微理论”和“超导性理论”。BCS理论已经进行了广泛的研究,许多研究人员为其发展做出了贡献。体育学提供了超导性的基础知识的介绍,而舞蹈类比为Bob Schrieffer所描述的BCS理论提供了创造性的解释。超导性的研究仍然是一个积极的研究领域,并持续努力理解和应用BCS理论中概述的原则。