解锁光谱对纳米级的真正潜力需要开发稳定和低噪声激光源。在这里,我们开发了一个基于由飞秒纤维激光器泵送的全正常分散纤维的低噪声超脑(SC)来源,并显示出高分辨率,在近芳烃(NIR)区域的频谱分辨出近场测量。具体来说,我们探讨了对无孔径散射型扫描近场光学显微镜(S-SNOM)的减少噪声要求,包括SC的固有脉冲到脉冲波动。我们使用SC的光源来展示第一个NIR,频谱解决的S-SNOM测量,这种情况是最先进的商业SC来源太嘈杂而无法有用。我们在单个测量中绘制了在波长区域的1.34–1.75μm波长区域中表面等离子体偏振子(spp)波的传播,从而实验表征了NIR中SPP的分散曲线。我们的结果代表了一种技术突破,有可能在近场研究中实现低噪声SC来源的广泛应用。
摘要 - 这封信讨论了通过超脑沉积(upd)及其在d -band(110-170 GHz)中的表征来制造Coplanar波导(CPW)传输线。upd是用于沉积功能纳米关的直接打印过程。最近,XTPL将其作为气溶胶喷气机和墨水喷射技术的替代方案。在UPD中,千分尺尺度喷嘴与打印的基板直接接触。这种方法允许应用高粘性纳米关。用粘度超过10 5 mpa·S的充满银色的墨水与喷嘴开口尺寸为5 µm,在Corning 1737展示玻璃和融合的硅胶底物上打印出cpws,并用气隙为10 µm。打印过程的横向精度约为1-2 µm。为了脱离传输线的性能,在基板上制造了通过反射线(TRL)校准标准。对于固化的纳米兰克的单个,400 nm厚的层,CPWS在整个D频带中的熔融二氧化硅和宽带传输上显示在140 GHz时约1.0 db / mm的损失。
报道了在非二元分级多模具纤维中从可见的到中红外(700–2800 nm)产生的两幅度超脑(700–2800 nm)。纤维设计基于纳米结构的核心,该核心由两种类型的铅孔 - 孔 - 玻璃棒,具有不同的折射率。与二氧化硅纤维相比,这种结构产生了有效的抛物线指数,扩展的传输窗口和十倍非线性。使用正常和异常分散体的波长在波长下进行脉搏泵,对定期自我成像播种的超核生成机制和不稳定性进行了详细的研究。显着地,发现高功率状态下合适的注射条件会导致输出光束发射显示出从非线性模式混合中自我清洁的明确签名。实验观测是使用广义非线性schrödinger方程的时空3+1d Nu-Merical模拟来解释的,并且模拟光谱与完整的两座光谱带宽的实验非常吻合。这些结果证明了一种新的途径,可以在中红外产生明亮的超人物光源。