中图分类号 : TM561 Analysis of Improved Phase-shift Full-bridge Converter for New Energy Generation ZENG Zhihui 1, 2 LIU Yunpeng 1, 2 ZHANG Linmei 1, 2 YANG Ming 1, 2
扩展的现实(XR)技术变得越来越普遍,并且可能有能力帮助跨性别者等边缘化群体。通过n = 18的跨性别技术创建者的访谈绘制,我们研究了XR技术的发展方式,并且可以支持跨性别者。我们发现了XR Technologies支持反式体验的许多创造性方式。反式技术创建者正在设计增强现实(AR)和虚拟现实(VR)系统,这些系统可以帮助人们探索跨性别的身份,体验新型的身体,教育和展示跨性别的故事并策划了跨性别的内容,操纵身体世界,并创新性别 - A rming手术技术。此外,我们展示了如何将XR作为反式身份的类比,可以帮助我们以新方式思考跨性别身份固有的UISIDE和UCTAILIAN,这反过来又使设想技术可以更好地支持复杂和不断变化的身份。尽管XR具有支持跨性别者的潜力,但当前的AR和VR系统仍面临限制其大规模使用的限制,但是随着访问XR系统的访问,它们的限制会增加,因此它们可以改善跨性别的生活。
摘要:在电缆中的绝缘层的交联聚乙烯(XLPE)的广泛使用可能归因于其出色的机械和介电性能。为了定量评估热老化后XLPE的绝缘状态,建立了加速的热老化实验平台。极化和去极化电流(PDC)以及在不同老化持续时间下XLPE绝缘裂纹时的伸长率。XLPE绝缘状态取决于断裂保留率(ER%)的伸长率。基于扩展的Debye模型,本文提出了稳定的松弛电荷数量和0.1 Hz的耗散因子,以评估XLPE的绝缘状态。结果表明,XLPE绝缘的ER%随着衰老程度的增长而降低。XLPE绝缘的极化和去极化电流将随着热老化而明显增加。电导率和陷阱水平密度也将增加。扩展Debye模型的分支数量增加,并出现新的极化类型。在本文提出的0.1 Hz处的稳定的松弛电荷量和耗散因子与XLPE绝缘的ER%具有良好的拟合关系,可以有效地评估XLPE绝缘的热老化状态。
感谢 Yabra Muvdi 提供的出色研究协助,他创建并估算了分类算法,并感谢 Miaomiao Zhang 和 Kelsey Shipman 为数据分析提供支持。Hansen 非常感谢 ERC Consolidator Grant 864863 的资金支持,感谢伦敦政治经济学院 STICERD 博士研究基金和英联邦奖学金委员会的 Lambert 的资金支持,感谢 Smith Richardson 和 John Templeton 基金会的 Bloom 的资金支持,感谢 Templeton 基金会和芝加哥大学布斯商学院的 Davis 的资金支持,感谢哈佛商学院的 Sadun 的资金支持。本文附带的精选可视化和数据可在 www.WFHmap.com 上找到。本文表达的观点为作者的观点,并不一定反映美国国家经济研究局的观点。
因此,跨个体、跨场景的脑电分析方法逐渐成为研究热点。越来越多的研究人员将广泛应用脑 电信号分析的特征于跨个体、跨场景的脑电信号分析研究中。 Touryan 等人采用经典的独立成分分 析的特征分析方法描述特征空间,计算功率谱密度( Power Spectral Density , PSD ),并采用顺序 前向浮动选择方法识别频谱特征中的独立成分集,结果表明该方法可以识别出跨场景脑电信号中的 共同成分 [88] 。 Kakkos 等人采用了特征融合的方法,将 PSD 与功能连接特征相结合,提高了跨场景 分类的性能,并证明了脑特征融合在跨场景中的应用更为有效 [89] 。 Xing 等人将模糊熵特征用于跨 场景脑电信号分析,发现模糊熵特征相对于其他特征更能适合跨场景 [90] 。卷积神经网络 ( Convolutional Neural Networks , CNN )和递归神经网络( Recurrent Neural Networks , RNN )等基 于深度学习的新型跨任务模型在跨场景脑电分析中展现了巨大潜力。这些模型能够自动提取特征和 学习复杂的脑电特征,从而有效地缩小不同任务和场景之间的差距,提高模型的泛化能力 [91][92][93] 。 近年来,一些跨学科的方法被创新性地应用于跨场景研究, Zhao 等人提出了一种跨学科的对齐多 源域自适应方法,用于跨个体的 EEG 疲劳状态评估,显著提高了模型的泛化能力 [94] , Zhou 等人在 此基础上进行改进,提出了一种跨任务域自适应方法,有效提升了跨场景认知诊断的性能 [95] 。
扬声器驱动器单电源电压 4.5V ~ 26V 内置 LDO 输出 5V(用于其他设备) 支持多种输出配置 BTL 模式:30W/CH,8 Ω,24 V BTL 模式:30W/CH,4 Ω,18 V PBTL 模式:60W/CH,4 Ω,24 V PBTL 模式:45W/CH,4 Ω,18 V PBTL 模式:60W/CH,2 Ω,18 V 扬声器性能 BTL 模式:30W/CH,8 Ω <1% THD+N@24V BTL 模式:30W/CH,4 Ω <1% THD+N@18V >90% 高效的 D 类操作无需散热器 节能的 D 类操作低空闲电流 <23mA 多种开关频率 AM避免主/从同步 300KHz 至 1.2MHz 开关频率 差分输入 四个可选的固定增益设置 内部振荡器 短路保护,带自动恢复 欠压检测 过压保护 爆音和咔嗒声噪音降低 可调自动增益控制或可调功率限制功能,用于保护扬声器 输出直流检测,用于保护扬声器 热折返控制 过温保护,带自动恢复