然后,我们通过分析两种情景估计了执行碎片修复的益处。对于大型碎片修复,我们估计了在低地球轨道上移除 50 个统计上最令人担忧的废弃物体的益处(McKnight 等人,2021 年),而对于小型碎片修复,我们估计了从 450-850 公里高度移除 100,000 块 1-10 厘米碎片的益处。在这两种情景中,都假设所有碎片都先得到修复,并在接下来的几年中产生益处。虽然这并非现实中碎片修复的方式,但它消除了计算与缓慢修复碎片相关的益处的复杂性,并且对修复成本几乎没有影响。如果消除这一假设,我们对修复方法之间相对成本和益处的评估不太可能发生重大变化。
自2020年3月以来,由于中心和设施关闭,该机构面临着前所未有的挑战,并转移了其许多公务员和承包商劳动力的强制性远程姿势。COVID-19大流行导致员工的可用性,材料和供应链以及计划和项目时间表的中断,这些时间表延迟了发射准备日期和其他运营活动。尽管NASA经理包括计划的计划余量和项目计划以解决无法预见的情况,但在许多情况下,利润率不足以吸收大流行的影响,这是全世界继续愤怒的公共卫生紧急情况。对NASA的这些延迟和挑战的成本的一流估计估计近30亿美元。但是,直到COVID-19紧急情况下平息之前,NASA将无法量化大流行对其计划和项目的完全影响。
本文由学术共享带给您免费的公开访问。被授权的学术公共管理员纳入学生作品。有关更多信息,请联系commons@erau.edu。
FACA公开会议,混合动力,上午8:30,美国东部时间概述,执行秘书,上午8:35 开幕词迈克尔·约翰斯(Michael Johns),主席上午8:40 Welcome to NASA's Glenn Research Center James Kenyon, Center Director, NASA Glenn 9:10 a.m. Space Technology Mission Directorate (STMD) Update Clayton Turner, Acting Associate Administrator, STMD 10:00 a.m. 2024 Shortfalls Ranking Process and Results Overview Alesyn Lowry, Director for Strategic Planning and Integration, STMD Michelle Munk, Acting Chief Architect, STMD 10:45 a.m. NASA核系统更新Anthony Calomino,太空核技术负责人,STMD Kurt Polzin,NASA太空核推进项目的首席工程师,NASA MARSHALL LINDSAY KALDON,NASA GLENN,NASA GLENN的Fission Surface Powers Manager,NASA Glenn 12:00 午餐休息和委员会年度道德简报下午1:30低温流体管理投资组合更新Lauren Ameen,低温流体管理投资组合项目副经理,NASA Glenn 2:15 pm。商业月球有效载荷服务Intuitive Machines-2技术演示概述Mark Thornblom,技术集成游戏更改开发(GCD)计划的副计划经理,NASA LangleyFACA公开会议,混合动力,上午8:30,美国东部时间概述,执行秘书,上午8:35开幕词迈克尔·约翰斯(Michael Johns),主席上午8:40Welcome to NASA's Glenn Research Center James Kenyon, Center Director, NASA Glenn 9:10 a.m. Space Technology Mission Directorate (STMD) Update Clayton Turner, Acting Associate Administrator, STMD 10:00 a.m. 2024 Shortfalls Ranking Process and Results Overview Alesyn Lowry, Director for Strategic Planning and Integration, STMD Michelle Munk, Acting Chief Architect, STMD 10:45 a.m. NASA核系统更新Anthony Calomino,太空核技术负责人,STMD Kurt Polzin,NASA太空核推进项目的首席工程师,NASA MARSHALL LINDSAY KALDON,NASA GLENN,NASA GLENN的Fission Surface Powers Manager,NASA Glenn 12:00午餐休息和委员会年度道德简报下午1:30低温流体管理投资组合更新Lauren Ameen,低温流体管理投资组合项目副经理,NASA Glenn 2:15 pm。商业月球有效载荷服务Intuitive Machines-2技术演示概述Mark Thornblom,技术集成游戏更改开发(GCD)计划的副计划经理,NASA Langley
NASA的轨道碎片计划办公室(ODPO)维护了各种返回的航天器材料,能力和设施,用于原位和实验室测量,这些材料和实验室测量直接支持轨道碎片(OD)环境模型。原位测量值包括对暴露和返回的硬件表面的分析。这些表面是地面雷达和光学传感器敏感性下方的小型微度(MM)和OD(MMOD)通量的被动传感器。各种仪器和技术用于确定所选影响特征的大小和深度,如果可行的话,则使用弹丸材料的组成。对撞击子残基的分析可以使MM和OD在1 mm以下的MM和OD分化,以支持建模OD环境。此外,根据化学分析,可以在低,中,中,高密度撞击器中进一步区分被鉴定为OD的弹丸。除了现场测量外,ODPO还与美国太空太空系统司令部(以前是美国空军空间和导弹系统中心),航空航天公司和佛罗里达州的美国太空太空系统司令部合作,在2014年空军阿诺德工程工程开发复杂的基于实验室的超速影响测试,DEBRISAT。正在分析此影响测试系列的结果数据,以评估碎片的大小/质量,材料/密度,形状和其他感兴趣的参数。使用现代,低地球轨道航天器的模拟轨道破裂更新NASA的分手模型和尺寸估计模型所需的数据。最终,该冲击测试的200,000多个片段将存储在NASA Johnson航天中心,并由ODPO进一步分析。该项目还将使用机器学习技术来推断影响实验中使用的软泡沫中嵌入的片段的物理参数。应用于泡沫面板的X射线图像,这些技术有望最大程度地减少人类在循环过程中的碎片提取和物理表征。将介绍该项目和收集的数据的简要概述。
与Globalpush一起商业化空间,人类正在将其发射到轨道上,而自然捕获速度比Naturalefects删除了它们。轨道碎片特别危险,因为它由于轨道对象之间的裂解而能够成倍增长。为了确保长期可访问性,必须积极去除高风险的物体以限制轨道碎片人群的生长。一种有源碎屑去除的方法是用束缚网捕获并将物体拖出轨道的。这项工作介绍了拟议的新型系绳配置部署动力学的验证。的束缚元素:通过质量弹簧连接的总体质量节点系统和绝对的网络涂层和一个绝对的坐标涂层模型。实验确定了系绳的部署运动的IRACCRICHAICY,并使用新型Tether设计进行了完整的捕获场景。
地球同步 (GSO) 区域的光学勘测通常需要在天空覆盖范围、勘测深度和成本之间取得平衡。使用商用现货 (COTS) 组件可以合理的成本实现大面积勘测,但这些系统的孔径仅限于 30 厘米左右。孔径超过 1 米的大型望远镜可以探测微弱碎片群以发现分米级的物体,但通常视野较小(约 1 平方度)并且无法大规模商业化使用。因此,尝试使用大型望远镜探测微弱碎片群的勘测通常仅限于对已知碎裂事件的目标观测。否则,视野较小再加上想要覆盖更多天空会导致检测到的物体的位置信息非常稀疏或有限。
Jer-Chyi Liou (NASA) NASA 轨道碎片计划办公室 (ODPO) 是 NASA 总部安全与任务保障办公室 (OSMA) 的一个授权计划。NASA 轨道碎片缓解程序要求 NPR 8715.6E 规定了 ODPO 的角色和职责,包括 (1) 现场以及通过雷达、望远镜和实验室实验收集轨道碎片测量数据,(2) 开发轨道碎片模型和任务支持工具,(3) 评估和记录 NASA 任务是否符合轨道碎片缓解要求,以及 (4) 为美国和国际社会的轨道碎片缓解政策和最佳实践做出贡献。ODPO 的首要任务是表征低地球轨道 (LEO) 中毫米级小型轨道碎片的风险。毫米级轨道碎片对于在 600 至 1000 公里高度运行的航天器而言,是终止任务的最高风险,数百架航天器在此高度运行,但缺乏对环境中如此小碎片的直接测量数据。需要毫米级轨道碎片的直接测量数据来支持制定和实施具有成本效益的防护措施,以确保未来太空任务的安全运行。2018 年美国国家空间交通管理政策、2021 年美国国家轨道碎片研究与发展计划和 2022 年美国国家轨道碎片实施计划也认识到需要解决低地球轨道这一关键数据缺口。自 2020 年代初以来,ODPO 一直在探索各种用于现场测量小型轨道碎片的粒子探测技术。这些努力的成果是与 JAXA 合作研发的多层声学和导电网格传感器 (MACS)。 MACS 结合了几种简单的检测原理,以最大限度地利用从每次碎片检测中提取的信息,从而为对低地球轨道上小型轨道碎片群体的定义进行有意义的改进提供数据。MACS 是一个四层传感系统。第一层是 JAXA 的导电网格薄膜空间碎片监测器 (SDM),第二层和第三层是相同的 Kapton 薄膜,最后一层是低密度合成泡沫板。每层都连接了多个声学传感器,以测量撞击时间和位置。泡沫板上的声学传感器也用于测量撞击动能。所有四层数据的组合提供了有关每个撞击轨道碎片颗粒的大小、质量、密度、撞击时间、速度和方向的信息。自 2017 年以来,ODPO 已与 JAXA 建立了多项代理协议,以开发、测试和优化 MACS 的设计。2022 年确定了在未来的 HTV-X 飞行中对 MACS 进行技术演示的机会,并于 2023 年确认。MACS HTV-X3 技术演示任务由 OSMA、NASA 科学任务理事会赞助,以及国际空间站 (ISS) 计划。HTV-X3 离开国际空间站后的技术演示阶段的任务概况尚未最终确定,但 HTV-X3 可能达到 500 公里的最大高度,持续时间长达 18 个月。HTV-X3 演示为充分完善 MACS 技术准备水平并展示其小碎片探测能力提供了绝佳机会,这将为 ODPO 在不久的将来开展一项任务以解决 600 公里高度以上关键的毫米级轨道碎片数据缺口铺平道路。
1. 美国国家背景和太阳物理部门的职责 在过去几年中,美国白宫科技政策办公室一直在制定美国国家轨道碎片战略,该战略已编入《国家轨道碎片实施计划》,于 2022 年 7 月发布。该计划涵盖三个领域:1. 碎片减缓 2. 碎片的跟踪和表征 3. 碎片的修复 虽然 NASA 已经确定了涵盖所有这三个领域的职责,但“碎片的跟踪和表征”下的几个项目现在属于 NASA 科学任务理事会太阳物理部门的职权范围。在广泛的组织层面,NASA 已将小型轨道碎片问题确定为机构风险,并分为三个单独的风险: - 空间可持续性:轨道碎片风险 - 空间可持续性:干扰 NASA 运营风险 - 空间可持续性:空间交通管理风险 为了解决和帮助减轻这些风险,NASA 的科学任务理事会 (SMD) 指示太阳物理部 (HPD): • 开发和部署空间仪器及其他调查,以更好地限制 500 至 1000 公里高度范围内的微碎片环境; • 开发和部署空间仪器及其他调查,以便更好地预测导致轨道碎片在地球大气层中损失的自然过程;以及 • 努力将这些测量结果整合到 NASA 开展的轨道碎片活动中,特别是 NASA 约翰逊基地的轨道碎片项目办公室,并改进空间天气预报。 HPD 已与 NASA 的轨道碎片计划办公室 (ODPO) 合作,帮助解决对小型 (<3 厘米) 轨道碎片群体了解不足的问题。ODPO 是 NASA 轨道碎片工程模型 (ORDEM 3.2) 的管理者,小型 OD 群体的特征最不明显,导致模型中的不确定性最大,是航天器设计中的一个重要成本驱动因素。我们对这些致命不可追踪 (LNT) 物体的缺乏了解,目前对 NASA 在低地球轨道 (LEO) 的运行任务构成了最大威胁,当然也扩展到所有在 LEO 上活动的航天器。如果不了解环境 (SSA),就无法完全了解 OD,如果不描述碎片群体及其影响,就无法完全了解运行环境 (SSA)。所有这些最好通过利用 HPD 的相关专业知识来完成。小型自然和人造空间物体(轨道碎片 [OD}、微陨石、尘埃)与传统空间天气一起被视为构成空间工作环境 (SWE),并且是 HPD 空间天气计划的一部分。
在低地球轨道(LEO)中存在数百万块轨道碎片,至少是垒球或更大的大小,可能会破坏卫星在撞击时;超过500,000大理石的大小足够大,可以损坏航天器或卫星;超过1亿颗盐的大小,可以穿刺太空服。此外,轨道碎片的日益增长会威胁到日常生活中使用的重要空间应用的损失,例如天气预报,电信和依赖稳定空间环境的全球定位系统。在NASA,由安全和任务保证办公室资助的轨道碎片计划办公室(ODPO)占据了国家和国际负责人的碎片环境测量以及制定采取缓解措施的技术共识。在NASA,由安全和任务保证办公室资助的轨道碎片计划办公室(ODPO)占据了国家和国际负责人的碎片环境测量以及制定采取缓解措施的技术共识。