太空行业的新贵正在将数千颗卫星部署到全球互联网服务上。这些计划有望在覆盖范围和延迟方面进行大量改进,并可能从根本上改变互联网。但是,如果此转换扩展到网络过渡到新型的计算服务,该怎么办?,如果每个卫星(除了用作网络路由器)外,还提供类似云的计算,使新的星座不仅使全球互联网服务提供商,但与此同时,还提供了一种新的云提供商,提供“计算您需要的地方”的新品种。我们在定性和定量上检查了这种轨道计算的机会和挑战。几个应用程序可以从中受益,包括内容分布和边缘库;多用户游戏,共同侵入和协作音乐;和处理空间数据。将计算硬件添加到卫星上似乎并不是在重量,体积和空间硬化方面都不是令人难以置信的,但是所需的功率抽取可能是很大的。另一个挑战源于低地球轨道的动态:一个特定的卫星只能在一次地面站看到几分钟,因此需要在管理状态应用程序时进行护理。我们对这些权衡的探索表明,这个“古怪”的主张不应随便予以驳回,并且可能值得研究社区的更深入地参与。
在所有全球导航卫星系统 (GNSS) 应用中,确定卫星轨道是一项重要任务。在本研究中,我们介绍了 GPS 接口规范文件中给出的方程以及使用广播星历计算 GPS 卫星位置 P、速度 V 和加速度 A 的龙格-库塔方法。描述 GPS 卫星运动的微分方程的定义使我们能够将龙格-库塔方法引入 GPS 轨道计算中;该方法使用本研究中从广播星历文件中提供的开普勒元素确定的初始条件。使用拉格朗日插值法对结果进行比较,其中使用精确星历估计矢量 P、V 和 A。在本研究中测试的 9 号 GPS 卫星的位置上,在七天内在 X、Y 和 Z 轴上获得的差异不超过 2.4 m。在速度和加速度方面,差异分别约为几 mm/s 和 mm/s 2。
最直接的轨道计算发生在中心天体比轨道天体质量大得多的情况下,例如人造卫星绕地球的轨道。我们假设行星绕太阳的轨道也是如此——这是一个很好的近似值,尤其是对于小行星。然而,在双星系统中,两颗恒星的质量相似,这种情况并不适用。即使对于行星运动,一旦考虑到太阳的轨道运动,也需要进行微小但重要的修正。好消息是,我们可以应用所有旧结果,并进行适当的修改。