*通讯作者:maozhou.meng@plymouth.ac.uk摘要:纤维增强塑料(FRP)复合材料已被广泛用于汽车行业,主要重点是减少质量。但是,关于其在电力传输组件(例如驱动轴)应用程序的报道相对较少。本文探讨了驱动轴中轻巧的FRP复合材料代替传统结构钢的可行性。针对钢驱动轴的三个FRP复合材料;玄武岩/环氧树脂,碳/环氧树脂和CNT(碳纳米管)增强碳/环氧复合材料。通过有限元分析(FEA)工具和经典层压板理论(CLT)分析了机械性能,而环境绩效是通过生命周期评估(LCA)方法评估的。研究表明,通过仔细设计,复合驱动轴可以胜过钢轴的机械性能(可节省90%的质量,安全系数高出50%)。研究发现钢轴比基于体现能量的FRP轴(钢总包含的能量150MJ,FRP +325MJ)可取。减少由于节省重量而减少的排放量的碳足迹意味着碳/环氧轴比钢轴更可取。提出了两个新的材料指数,可用于根据最小体现能量和全球变暖潜力选择材料。
摘要 提出了一种使用单面单圈螺旋天线作为反射元件的圆极化宽带反射阵列。设计、仿真和测量了一个 X 波段的 11 × 11 元件反射阵列,它展示了宽带宽和大角度波束扫描性能。通过旋转偏心反射元件可获得 360 ◦ 的相位范围。全波模拟表明,在 10 GHz 的中心频率处实现了 29.1% 的 1-dB 带宽,在法向入射角(φ=0◦,θ=0◦)下最大增益为 23.9 dB,其中聚焦光束的测得增益为 23.6 dB,孔径效率为 51.7%。模拟和测试的轴比在 8.9 GHz 至 10.7 GHz 范围内小于 3 dB。此外,通过将入射角从 + 30 ◦ 变为 − 30 ◦,验证了大角度光束扫描性能
内部变速箱通常位于低压和高压压缩机之间。在现代双轴设计中,内部变速箱从高压轴 [4] (p. 143) 获取动力。即两个同心轴中较外侧和较短的轴。但驱动器也可以从每个发动机轴获取动力,以便将负载分配到两个轴上。在这种情况下,飞机系统可能由低压轴 [11] (p. 67) 驱动。高压轴比低压轴旋转得更快,这也可能影响选择在何处连接哪种附件。驱动轴穿过发动机的空气管道(见图 1)。为了限制驱动轴和包围它的空心整流罩对发动机气流的干扰,轴设计得尽可能小,因此可以高速运转 [11]。附件变速箱 (AGB) 通常布置为弯曲的壳体,以便各种附件安装在靠近发动机的位置。每个附件均配有单独的安装垫(图 2)。壳体内的驱动由一列正齿轮提供。它们之间通常使用惰轮,以增加附件之间的间距。附件按速度降序排列在驱动轴入口的两侧。
摘要 — 提出了一种双波段、正交极化线性到圆极化 (LP-to-CP) 转换器的系统设计。这类极化转换器可以在两个独立的非相邻频带中将线性极化波转换为右旋和左旋圆极化 (RHCP 和 LHCP) 波。报道的极化器由三个级联的双各向同性薄片导纳组成,由两个各向同性介电板隔开。通过阻抗边界条件研究电磁问题。设计中采用了周期性加载传输线的传输矩阵分析。建立了一个分析模型,并推导出每个薄片导纳频率响应的闭式表达式。该方法避免了使用多参数优化程序。提出了一种用于 K/Ka 波段卫星通信应用的双波段、正交极化 LP-to-CP 转换器的示例。偏振器在 K/Ka 波段的发射和接收通道上分别执行 LP 到 LHCP 和 LP 到 RHCP 的转换。该设计通过原型进行了验证。在垂直入射下,偏振器在 18-22.2 GHz(∼ 21%)和 28.7-30.4 GHz(∼ 6%)波段上的轴比 (AR) 低于 3 dB。在相同的两个波段内,总透射率高于 -1 dB。扫描角度在 ± 45 ◦ 以内时性能稳定。对于 45 ◦ 的入射角,在 17-22 GHz(∼ 25.6%)和 28.6-30 GHz(∼ 4.7%)波段上的 AR 低于 3 dB,总透射率高于 -1.2 dB。
[1] JT Heron, M. Trassin, K. Ashraf, M. Gajek, Q. He, SY Yang, DE Nikonov, Y.-H. Chu, S. Salahuddin 和 R. Ramesh, 《铁磁体-多铁性异质结构中的电场诱导磁化反转》, Phys Rev Lett 107 , 217202 (2011)。[2] SO Sayedaghaee, B. Xu, S. Prosandeev, C. Paillard 和 L. Bellaiche, 《多铁性 BiFeO3 中的新型动态磁电效应》, Phys Rev Lett 122 , 097601 (2019)。 [3] A. Haykal 等人,BiFeO 3 中受应变和电场控制的反铁磁纹理,Nat Commun 11,1704 (2020)。[4] H. Jang 等人,外延 (001) BiFeO3 薄膜中的应变诱导极化旋转,Phys Rev Lett 101,107602 (2008)。[5] IC Infante 等人,BiFeO 3 中外延应变桥接多铁性相变,Phys Rev Lett 105,057601 (2010)。 [6] H. Béa 等人,巨轴比化合物室温多铁性证据,Phys Rev Lett 102,217603 (2009)。[7] IC Infante 等人,BiFeO 3 薄膜室温附近的多铁性相变,Phys Rev Lett 107,237601 (2011)。[8] H. Béa、M. Bibes、F. Ott、B. Dupé、X.-H. Zhu、S. Petit、S. Fusil、C. Deranlot、K. Bouzehouane 和 A. Barthélémy,多铁性 BiFeO 3 外延薄膜的交换偏置机制,Phys Rev Lett 100,017204 (2008)。 [9] D. Lebeugle,D. Colson,A. Forget,M. Viret,AM Bataille 和 A. Gukasov,室温下电场诱导 BiFeO3 单晶自旋翻转,Phys Rev Lett 100,227602(2008)。[10] A. Finco 等人,非共线反铁磁体中的拓扑缺陷成像,Phys Rev Lett 128,187201(2022)。[11] M. Hambe,A. Petraru,NA Pertsev,P. Munroe,V. Nagarajan 和 H. Kohlstedt,跨越界面:磁性复合氧化物异质结构中隧道电流的铁电控制,Adv Funct Mater 20,2436(2010)。 [12] SR Burns、O. Paull、J. Juraszek、V. Nagarajan 和 D. Sando,《外延 BiFeO 3 中的摆线或非共线反铁磁性实验指南》,《先进材料》第 32 卷,2003711 页 (2020 年)。[13] M. Cazayous、Y. Gallais、A. Sacuto、R. de Sousa、D. Lebeugle 和 D. Colson,《在 BiFeO 3 中可能观察到摆线电磁振子》,《物理评论快报》第 101 卷,037601 页 (2008 年)。[14] D. Sando 等人,《通过外延应变制作 BiFeO 3 薄膜的磁振子和自旋电子响应》,《自然材料》第 12 卷,641 页 (2013 年)。 [15] J. Li 等人,亚太赫兹产生的反铁磁磁振子的自旋电流,Nature 578,70 (2020)。[16] E. Parsonnet 等人,在没有施加磁场的情况下对热磁振子的非挥发性电场控制,Phys Rev Lett 129,87601 (2022)。[17] S. Manipatruni、DE Nikonov、CC Lin、TA Gosavi、H. Liu、B. Prasad、YL Huang、E. Bonturim、R. Ramesh 和 IA Young,可扩展的节能磁电自旋轨道逻辑,Nature 565,35 (2019)。 [18] YT Chen、S. Takahashi、H. Nakayama、M. Althammer、STB Goennenwein、E. Saitoh 和 GEWBauer, 自旋霍尔磁阻理论, Phys Rev B 87 , 144411 (2013)。[19] J. Fischer 等人, 反铁磁体/重金属异质结构中的自旋霍尔磁阻, Phys Rev B 97 , 014417 (2018)。