摘要 这项工作研究了阿波罗计划的导航计算机,特别是阿波罗制导计算机。从硬件和软件方面进行了描述,并使用 NASA、麻省理工学院和其他参与开发的机构发布的文件以及我们自己的分析来分析其功能和稳健性。描述了载人太空旅行中计算机面临的危险,并讨论了由此产生的特殊功能。此外,还以阿波罗制导计算机的用户界面为例,介绍了载人航天用户界面的特点。为了能够充分讨论这个广泛的主题,这项工作采用了多层次的方法:既使用大量可用的历史文献进行调查,又使用专门为此目的创建的程序进行分析以及软件方法。这显示了阿波罗制导计算机的发展如何影响后来可靠地创建载人太空旅行硬件和软件的方法。相应地描述了当今用于载人太空旅行的计算机。由于阿波罗制导计算机不是一个孤立的系统,因此还提供了来自地面站的单独计算机。还涵盖了 20 世纪 60 年代发生的计算向分时系统的范式转变,因为这影响了阿波罗计划的导航计算机。最后,以电传操纵系统为例,介绍了阿波罗制导计算机开发的直接结果,并对可能的进一步开发进行了展望。
长期的载人太空探索任务需要环境控制和封闭式生命支持系统 (LSS),该系统能够生产和回收资源,从而满足人类在恶劣的太空环境中生存的所有基本代谢需求,无论是在旅行期间还是在轨道/行星站。随着任务距离地球越来越远,这将变得越来越必要,从而限制了从地球补给资源的技术和经济可行性。需要将生物元素进一步融入最先进的(主要是非生物的)LSS,从而形成生物再生 LSS (BLSS),以实现额外的资源回收、食品生产和废物处理解决方案,并使前往月球和火星的任务更加自给自足。有一整套功能对于维持人类在低地球轨道 (LEO) 的存在以及在月球或火星上成功定居至关重要,例如环境控制、空气再生、废物管理、供水、食品生产、舱室/栖息地增压、辐射防护、能源供应以及交通、通信和娱乐手段。在本文中,我们重点关注空气、水和食品生产以及废物管理,并讨论辐射防护和娱乐的一些方面。我们简要讨论了现有知识,强调了尚未解决的差距,并提出了短期、中期和长期内可能进行的未来实验,以实现载人航天探索的目标,同时也可能给地球带来好处。
执行摘要 美国宇航局载人航天计划在航天飞机和国际空间站 (ISS) 计划中积累了多年的经验,可以执行外部飞行器近距离活动,例如载人舱外活动 (EVA)、机器人技术、对接和检查。这些体验在低地球轨道 (LEO) 的每个轨道上每 45 分钟在全日照下进行一次。月球表面,尤其是南极,由于昼夜循环持续一个月(参见下图与阿波罗条件的比较)以及太阳相对于南极表面的角度极低,照明条件较差。外部照明系统的探索需要为永久黑暗和永久强烈阳光做好规划。本 Artemis 照明注意事项概述技术简介旨在为开发适合人类和机器视觉相关 EVA 任务的综合照明架构计划提供指导。照明工程过程可能涉及在功率限制和光源及操作员位置的物理限制内满足这些需求的权衡。将该解决方案作为一个综合设计项目处理,将提供所有最终项目组件(宇航服、月球地形车(LTV)、载人着陆器系统(HLS)和表面)的开发,以提供高效的照明系统,支持机组人员安全和任务目标的执行。
1 简介 各国航天机构重新燃起动力,将人类太空探索从低地球轨道 (LEO) 推向深空。NASA 的 Artemis 计划勾勒出重返月球和远赴火星的清晰路线 [NASA, 2017]。此外,SpaceX 和 Blue Origin 等主要参与者在商业航天领域取得的最新成功,使载人航天变得更加便捷、经济实惠,并使未来的长期任务成为现实。然而,未来长时间的航天飞行需要独立于 LEO 操作的系统,例如持续通信、在相对较短的时间内通过多个系统传输大量数据的能力、或在需要时请求和交换机组人员的能力。在地球上,机器学习 (ML) 和机器自动化已经在推动下一次工业革命,并在农业和制造业等领域实现完全自主的工业流程 [Ayaz et al. , 2019; Yang et al. , 2019]。然而,航天本身却远远落后于这些进步。在这里,我们讨论了 ML 支持系统在太空领域面临的挑战以及 ML 系统在航天器上的适用性和优势。我们通过自主医疗系统的示例重点介绍上述内容,并描述了成功开发此类系统的基础设施。
关键词:后入式航天服、HUT、PLSS、Aouda.X、穿戴、原型开发 由奥地利空间论坛(OWF)开发的 Aouda.X 航天服模拟器目前由一个重 48 公斤的系统组成,其中近 57% 由航天服的 HUT(硬上身)、PLSS(便携式生命支持系统)和 OBDH(机载数据处理)组成。除此之外,当前配置需要 3 小时的辅助穿戴/脱下。为了改善设计的人体工程学,必须开发一种相对较轻且具有高效穿戴能力(最好是自行穿戴)的 HUT/PLSS 设计原型。可以通过提出后入口设计来解决此问题,当在 Aouda.X 上实施时,可以潜在地缓解这些障碍。本研究旨在根据行星服性能指标和操作要求,为 Aouda.X 的当前配置确定合适的后入口封闭设计。Aouda.X 后入口设计还旨在与北达科他大学载人航天实验室开发的 NDX-Suitport 兼容。论文工作包括开发一种合适的方法来区分宇航服模拟器的 HUT 和 PLSS 的后入口设计,并根据这些要求识别自密封/锁定机制。作为本研究的结果,设计了 HUT 和 PLSS 的全尺寸 CAD 模型,该模型具有与宇航服和宇航服端口兼容的最佳尺寸。进行静态载荷分析以验证结构的可行性并对材料选择提出合适的建议。概述了进一步改进后入式防护服开发的方法。
机组人员中有两名沙特国民,分别是任务一专家阿里·艾卡米(Ali AIQami),他是沙特第二位男性宇航员,以及生物医学科学家雷亚娜·巴尔纳维(Rayyanah Barnawi),她是首位进入太空的沙特女性。巴尔纳维在空间站进行的实验主要针对乳腺癌研究。Axiom Space 载人航天总监、前 NASA 宇航员和国际空间站指挥官佩吉·惠特森(Peggy Whitson)领导了这次任务。飞行员兼前赛车手约翰·肖夫纳(John Shoffner)担任飞行员。这次任务是沙特阿拉伯致力于太空探索、技术创新和医学研究的最新例证,也是王储穆罕默德·本·萨勒曼“2030 愿景”的一部分。多年来,沙特一直与美国航天局和私营公司密切合作,包括 NASA、SpaceX 和 Axiom。合作遗产美国和沙特阿拉伯在太空技术领域有着长期的合作关系。 1985 年,苏尔坦·本·萨勒曼王子成为美国宇航局“发现号”航天飞机(STS 51-G 任务)上的七名宇航员之一,成为第一位进入太空的阿拉伯穆斯林。最近的合作包括:• 2022 年 7 月,乔·拜登总统访问沙特阿拉伯期间,沙特阿拉伯和美国签署了 18 项涉及太空、投资、能源、通信和健康的协议。
太空飞行系列文章的一部分 历史 太空飞行史 太空竞赛 太空飞行时间线 太空探测器 月球任务 应用 地球观测卫星 间谍卫星 通讯卫星 军用卫星 卫星导航 太空望远镜 太空探索 太空旅游 太空殖民 航天器 机器人航天器 卫星 太空探测器 货运航天器 载人航天 太空舱 阿波罗登月舱 航天飞机 空间站 太空飞机 航天发射 太空港 发射台 一次性和可重复使用的运载火箭 逃逸速度 非火箭航天发射 航天类型 亚轨道 轨道 行星际 星际 星系际 空间组织列表 航天机构 太空部队 公司 太空飞行门户网站 卫星导航或 satnav 系统是一种使用卫星提供自主地理定位的系统。覆盖全球的卫星导航系统称为全球导航卫星系统 (GNSS)。截至 2023 年[更新],有四个全球系统投入运营:美国的全球定位系统 (GPS)、俄罗斯的全球导航卫星系统 (GLONASS)、中国的北斗卫星导航系统[1] 和欧盟的伽利略。[2] 正在使用的区域导航卫星系统是日本的准天顶卫星系统 (QZSS),这是一种基于 GPS 卫星的增强系统,可提高 GPS 的准确性,卫星导航独立于 GPS 计划于 2023 年实现[3],以及印度的区域导航卫星
太空领域的研究和使用,包括最近对月球及更远太空的载人航天探索的复兴,推动了对航天器热防护系统 (TPS) 的更高性能材料的搜索。陶瓷和高性能碳都表现出适合 TPS 应用的材料特性,但可以使用增材制造 (AM) 方法最大限度地提高其性能。振动辅助打印 (VAP) 是一种新开发的 AM 工艺,可以使用高粘度的陶瓷形成聚合物与固体陶瓷颗粒的混合物来制造零件。这项工作探索了利用 VAP 的陶瓷夹层 TPS 的 AM。TPS 外层由碳化硅 (SiC) 组成,具有高抗氧化性、高熔点和低热导率。薄的中间层由碳基材料组成,可提供高平面热导率以重新分配热量。数值模拟表明,这种配置可有效降低模拟再入条件下的最高温度。由聚碳硅烷聚合物和纯 SiC 粉末制备出高粘度混合物,可使用 VAP 进行 3D 打印,并使用碳负载或碳纤维负载细丝通过标准热塑性挤出打印用于组装的中间层。SiC 组件固化温度高达 248.8°C,热解温度高达 1,600°C,并通过 SEM、EDS 和 XRD 进行表征并测试抗压强度。
美国国家航空航天局 (NASA) 深空任务载人深空系统人类等级认证要求和标准是一套综合的技术要求、标准和流程,美国国家航空航天局 (NASA) 项目经理应实施这些要求、标准和流程,以对载人深空系统进行人类等级认证。这些要求建立在 NASA 独特的载人航天知识和经验之上。本文件旨在定义要求、标准和人类等级认证流程和产品,这些要求、标准和人类等级认证流程和产品将用于认证系统在深空任务中搭载 NASA 或 NASA 赞助的机组人员的安全性,适用于不受 NPR 8705.2《空间系统人类等级要求》管辖的项目。猎户座、太空发射系统 (SLS) 和探索地面系统 (EGS) 受 NPR 8705.2 管辖。NASA 计划购买、生产和/或合作提供载人深空系统,作为 NASA 探索计划和政策的一部分。NASA 选择以 NPR 8705.2《太空系统载人评级要求》中记录的方法为基础来认证此类系统。该机构的政策要求 NASA 分析风险并决定必要的步骤,以确保在使用 NASA 无法控制的设计或操作将 NASA 人员置于危险之中时的安全。
摘要:NASA 丰富的载人航天历史为今天的探索愿景奠定了基础:保持美国在太空领域的领导地位,在月球及其周围建立持久的存在,并为火星及更远的未来铺平道路。NASA 的 Artemis 任务将使用太空发射系统、猎户座飞船和载人着陆系统将人类送回月球表面并建立永久的月球大本营。为了支持 Artemis 任务,NASA 的 Gateway 计划将通过国际合作,在月球周围建立人类第一个空间站。实现这些雄心勃勃的目标需要创新的技术和系统,其中一些尚未得到证实。先进的材料、结构和制造技术将成为月球及其周围长期居住地以及月球和深空探测飞行器的基础。为了在恶劣的太空环境中成功长时间运行,这些居住地和飞行器需要同样先进的 NDE 和 SHM 技术,以确保它们既能正确制造,又能完全完成其任务。这些技术必须坚固耐用,并易于宇航员操作,尽管宇航员可能经验有限,而且穿着笨重的宇航服。NASA 还计划使用机器人技术为外星应用建造某些关键基础设施元素。可能要建造的元素包括栖息地、着陆垫和停机坪、道路、防爆墙和遮阳墙,以及使用来自地球的原材料和月球表面现有的材料建造的隔热和微陨石防护罩。因此,可以补充机器人材料制造的自动检测技术是非常可取的。本演讲将详细讨论 NASA 在追求人类探索太空愿景的过程中对先进 NDE 和 SHM 技术的一些需求,以及过去如何满足这些需求的一些例子。