本研究考虑了识别安全约束和为使用神经网络控制系统 (NNCS) 的深度强化学习 (RL) 战术自动驾驶仪开发运行时保证 (RTA) 的问题。本研究研究了 NNCS 执行自主编队飞行而 RTA 系统提供防撞和地理围栏保证的特定用例。首先,应用系统理论事故模型和过程 (STAMP) 来识别事故、危险和安全约束,并定义地面站、载人飞行长机和代理无人僚机的功能控制系统框图。然后,将系统理论过程分析 (STPA) 应用于地面站、载人飞行长机、代理无人僚机和僚机内部元素之间的交互,以识别不安全的控制动作、导致每种动作的情景以及降低风险的安全要求。这项研究是 STAMP 和 STPA 首次应用于受 RTA 约束的 NNCS。
• 加速关键月球基础设施能力的技术准备,为早期无人商业任务进行技术演示,并为载人飞行系统的发展提供参考。 • 通过内部活动、竞争性计划和公私合作伙伴关系相结合的方式实施。 • 与 NASA 科学任务理事会和人类探索与行动任务理事会协调,确定优先事项。
最后,经过验证的 CFD 尾流被整合到利物浦的 HELIFLIGHT-R 载人飞行模拟器中,为此开发了 QEC 模拟环境。两名前皇家海军试飞员随后驾驶西科斯基 SH-60 海鹰直升机在 QEC 甲板上进行了一系列着陆,以在利物浦展示这一新开发的能力,并在现实世界的 FOCFT 之前对不同风速和方位角下的飞行员工作量进行初步评估。本论文报告了此次初步飞行测试的结果,以及未来工作的结论和建议。
最后,经过验证的 CFD 尾流被整合到利物浦的 HELIFLIGHT-R 载人飞行模拟器中,为此开发了 QEC 模拟环境。两名前皇家海军试飞员随后驾驶西科斯基 SH-60 海鹰直升机在 QEC 甲板上进行了一系列着陆,以在利物浦展示这一新开发的能力,并在现实世界的 FOCFT 之前对不同风速和方位角下的飞行员工作量进行初步评估。本论文报告了此次初步飞行测试的结果,以及未来工作的结论和建议。
本文件由位于阿拉巴马州亨茨维尔的 NASA 马歇尔太空飞行中心的 SLS 项目办公室准备,该办公室负责 SLS 的设计、开发、测试和工程。SLS 是一种新型超重型火箭,将作为 Artemis 任务的一部分将宇航员送上月球。SLS 和猎户座载人飞船 Artemis I 的首次飞行将从佛罗里达州的 NASA 肯尼迪航天中心升空,并将无人驾驶的猎户座飞船送入月球轨道。Artemis I 是一次严格的试飞,旨在从 Artemis II 任务开始的载人飞行之前彻底测试 SLS 火箭的所有系统。
本文件由位于阿拉巴马州亨茨维尔的 NASA 马歇尔太空飞行中心的 SLS 项目办公室准备,该办公室负责 SLS 的设计、开发、测试和工程,SLS 是一种新型超重型火箭,将作为 Artemis 任务的一部分将宇航员送上月球。SLS 和猎户座载人飞船 Artemis I 的首次飞行将从佛罗里达州的 NASA 肯尼迪航天中心升空,并将无人驾驶的猎户座飞船送入月球轨道。Artemis I 是一次严格的试飞,旨在从 Artemis II 任务开始的载人飞行之前彻底测试 SLS 火箭的所有系统。
这是我们航天工业和国际航天伙伴关系生存所必需的动力。24 年来,国际空间站上的持续载人飞行推动了研究的加速发展,展示了在太空生活和工作所需的条件,并促进了发射业的发展,使低地球轨道更加容易进入。保持这种不间断的存在将使我们能够降低将人类送上火星的风险,促进与国际合作伙伴的合作,维护运输模式,并提高运营技能。此外,这些目标和目的将为利用低地球轨道作为关键技术试验场的活动奠定基础,这些技术对于未来的深空探索至关重要,包括月球、火星及更远的地方。
火星表面受到来自太阳和宇宙的高能带电粒子的轰击,与地球相比,几乎没有任何防护。由于航天机构正在计划对这颗红色星球进行载人飞行,因此人们主要担心的是电离辐射对宇航员健康的影响。将暴露量保持在可接受的辐射剂量以下对机组人员的健康至关重要。在这项研究中,我们的目标是了解火星的辐射环境,并描述保护宇航员免受宇宙辐射有害影响的主要策略。具体来说,我们使用 Geant4 数值模型研究了火星辐射场中各种材料的屏蔽特性,并通过 MSL RAD 的现场仪器测量验证了该模型的准确性。我们的结果表明,复合材料(如塑料、橡胶或合成纤维)对宇宙射线具有类似的响应,是最好的屏蔽材料。火星风化层具有中间行为,因此可以作为额外的实用选择。我们表明,最广泛使用的铝与其他低原子序数材料结合使用时可能会有所帮助。
CS-23 飞机的自动飞行能力通过基于目视飞行规则 (VFR) 的自动机动而得到增强,目前载人飞行也遵循此规则。本文介绍的系统能够使用具有安全监控功能的自动飞行控制系统的现有模块将飞机引导至预定的着陆轨迹。本文开发的有限状态机使用户能够提供高级命令,使自动化系统能够根据 VFR 将飞机引导至选定的预先规划轨迹。进近和复飞机动是使用航路点离线规划的,这些航路点用于引导和控制。在 C2LAND 项目过程中,该系统被集成到飞行系统动力学研究所的自动飞行软件中。使用增量测试计划进行了软件在环 (SiL) 和硬件在环 (HiL) 测试,以确保代码的安全性和稳健性。随后,该系统在研究所的可选驾驶 Diamond DA42 飞机上的广泛飞行测试活动中得到了成功演示。