为了有效地覆盖服务区,通常需要使用多个发射器。当单个发射器的覆盖范围较小时,应使用单个射频信道,以避免需要多信道接收器。在这种情况下,单独的发射器可以顺序或同时运行。在后一种情况下,通常使用偏移载波频率的技术,偏移量适合所采用的编码系统。还需要补偿因各个固定电话线到发射器的特性而导致的调制信号延迟差异。一种方法是通过无线寻呼信道进行代码位同步。需要有关此同步方法允许的比特率的信息。
金属中传输系数的线性温度依赖性通常归因于非液体物理学。 在这里,我们证明了在干净的2D电子流体中非局部电导率的T线性行为,其中载波碰撞有助于传导并导致电导性的流体动力传输,而不是随着温度而增长的电阻。 关键方面是出现多个流体动力模式,代表费米表面在时空中演变的奇数调制。 这种模式的级联导致线性t依赖性延伸至最低温度,以及像kolmogorov一样的分数幂-5 / 3的电导率缩放与波量。 这些依赖性为通过这种模式驱动的非经典水动力学提供了吸烟枪,预计将对具有简单近圆形费米表面的2D电子流体通用。金属中传输系数的线性温度依赖性通常归因于非液体物理学。在这里,我们证明了在干净的2D电子流体中非局部电导率的T线性行为,其中载波碰撞有助于传导并导致电导性的流体动力传输,而不是随着温度而增长的电阻。关键方面是出现多个流体动力模式,代表费米表面在时空中演变的奇数调制。这种模式的级联导致线性t依赖性延伸至最低温度,以及像kolmogorov一样的分数幂-5 / 3的电导率缩放与波量。这些依赖性为通过这种模式驱动的非经典水动力学提供了吸烟枪,预计将对具有简单近圆形费米表面的2D电子流体通用。
波折 - 波折叠通过将波的峰向内折叠来从基本正弦波产生多个谐波。增加折叠控制或折叠CV会增加谐波泛音的量。如果未将插孔插入折叠CV输入中,则此控件将施加到振荡器的波折的全局量设置。如果将插孔插入折叠CV输入中,则控件充当衰减器,将CV输入缩放。控件上方的绿色LED指示三种类型的波折:1]对称2]不对称3]软夹以选择哪个,在转动控件的同时按下并保持按钮。波折仅应用于载波振荡器。
近实时 RAN 智能控制器 (Near-RT RIC) 通过实施由 Non-RT RIC 派生和分发的策略来补充 Non-RT RIC。Mavenir 的 Near-RT RIC 使用专利技术来唯一地识别用户设备 (UE),以便进行性能跟踪和控制,同时使用基于标准的 A1 和 E2 接口程序,以每个服务/UE 级别粒度进行操作。它在几毫秒的时间内与 RAN 进行交互,并且能够直接触发切换、载波聚合和双连接等操作。Near-RT RIC 可以调整分布式单元 (DU) 中的调度器参数,以满足 Non-RT RIC 设定的 QoS 目标。
摘要 — 近年来,自由空间光 (FSO) 通信因其独特的特点而变得非常重要:带宽大、免许可频谱、数据速率高、部署简便快捷、功耗低、质量要求低。FSO 通信使用近红外 (IR) 波段的光载波在地球大气层内建立地面链路、卫星间/深空链路或地对星/星对地链路。它还可用于遥感、射电天文学、军事、灾难恢复、最后一英里接入、无线蜂窝网络回程等。然而,尽管 FSO 通信潜力巨大,但其性能受到大气信道的不利影响(即吸收、散射和湍流)的限制。在这三种影响中,大气湍流是一个主要挑战,它可能导致系统的误码率 (BER) 性能严重下降,并使通信链路不可行。本文全面介绍了 FSO 通信系统在地对星/星对地和星间链路中面临的各种挑战。它还提供了各种性能缓解技术的详细信息,以实现高链路可用性和可靠性。本文的第一部分将重点介绍对地对星/星对地和星间链路光通信系统性能构成严重挑战的各种类型的损伤。本文的后半部分将为读者提供对物理层以及其他层(链路、网络或传输层)的各种技术的详尽回顾,以对抗大气的不利影响。本文还独特地介绍了一种最近开发的技术,该技术利用轨道角动量,在天基和近地光通信链路中利用光载波的高容量优势。本调查为读者提供了有关使用天基光回程链路的全面详细信息,以提供高容量和低成本的回程解决方案。
摘要。介绍了光电微波振荡器的设计方案和自由运行状态下的特性研究结果,提出了一种利用锁相环将其与高稳定晶体振荡器信号同步的方法,并分析了光电微波参考振荡器频率不稳定性实验研究的结果。具有光增益和 10 GHz 振荡频率的光电微波参考振荡器在与微波载波 10 kHz 频率偏移处同时提供超低相位噪声(小于 -142 dB Hz -1 )和振荡频谱中的低杂散水平(不超过 -94 dBc)。在这种情况下,振荡频率的温度系数由高稳定晶体振荡器的温度不稳定性决定。
Swift Navigation 精密 GNSS 接收器 mPCIe 模块 (PGM) 通过全球导航卫星系统 (GNSS) 定位和惯性传感器融合技术 (INS),在最恶劣的环境中实现低成本精密导航。该产品采用行业标准的“全”Mini PCI Express 模块外形设计,非常适合作为带有 mPCIe 扩展槽的嵌入式计算平台的附加组件,以及需要精密定位的应用,例如汽车、机器人、高精度数据收集、视频/传感器位置和图像时间标记。该模块专为主机应用处理器上的 Swift Navigation Starling® 定位引擎而设计,用于实时精密导航,具有双频 L1/L5 载波相位差分 GNSS RTK 和惯性/里程表传感器融合。
Swift Navigation 精密 GNSS 接收器 mPCIe 模块 (PGM) 通过全球导航卫星系统 (GNSS) 定位和惯性传感器融合技术 (INS),在最恶劣的环境中实现低成本精密导航。该产品采用行业标准的“全”Mini PCI Express 模块外形设计,非常适合作为带有 mini PCIe 扩展槽的嵌入式计算平台的附加组件,以及需要精密定位的应用,例如汽车、机器人、高精度数据收集、视频/传感器位置和图像时间标记。该卡专为主机应用处理器上的 Swift Navigation Starling 定位引擎而设计,用于实时精密导航,具有双频 L1/L5 载波相位差分 GNSS RTK 和惯性/里程表传感器融合。
在无线通信方面,微波技术通过长期发展和大量投资,目前已形成强劲势头,并已成功满足目前正在部署的 5G 基础设施初始阶段的要求。然而,包括毫米波 (mmWave) 在内的微波解决方案在支持未来应用的更高带宽方面已达到物理上限。因此,太赫兹 (THz) 波段和中红外波段等更高频段涵盖了更宽的电磁频谱范围,有望成为突破此类限制的候选技术。[1,2] 目前已进行多项太赫兹波段高数据速率传输实验,其中许多实验借助了光子技术。[3 – 5] 另一方面,随着载波频率的提高和带宽的扩大,这些无线系统正在采用一种新模式,即信号以高增益导波的形式发射