简介:下一代无线网络将依靠更小的蜂窝和更大的带宽来增加容量。通过保持无线电头硬件简单,光纤无线电技术可以实现这种密集的基站网络。利用硅光子技术实现基站硬件的小型化,可以降低尺寸和成本。对于微波光子应用,氮化硅 (SiN) 平台提供损耗极低的波导和一些最好的集成滤波器。然而,随着转向更高的载波频率,在毫米波和太赫兹频段,对光电二极管带宽的要求也会增加。当前的 SiN 平台缺少这种光电二极管,因此阻碍了高频微波光子应用。[1] 我们展示了一种 300 GHz 的通信链路,该链路由 SiN 上的异构集成单行载波 (UTC) 光电二极管作为发射器中的光电换能器实现。
摘要:锂离子电池内的电源线通信允许在电池组中每个仪器单元的传感器节点之间传递高纤维传感器数据,以转移到外部电池管理系统。在本文中,对各种电荷状态下锂离子电池的变化特征进行了测量,分析,并比较了它们在10 MHz至6 GHz的载波频率的电源线通信系统上的有效性。此外,研究了正交振幅调制(QAM)的使用,以确定其作为同一载流子频率范围的最新调制方法的有效性。总体结果表明,某些载波频率和QAM订单可能不适合原位电池组电源线通信,因为电池阻抗的变化和某些锂离子电池电荷状态的变化会导致误差向量幅度的增加,位误差比和符号误差比的增加。在本文中还提出了基于经验结果的这些不断变化特征的影响的建议和趋势。
这一原理的特殊性之一是,载波频率越低,芯片天线的匝数就必须越大,才能产生足够的电压来为芯片供电,从而增加了大批量制造的复杂性过程。标签可以粘贴、佩戴、插入物体中。 “对象”一词是广义上的理解,它可以是一个包裹、一张智能卡(电话、银行)、一辆车辆等。组成这些应用程序的不同元素越标准化,潜在的数量就越大可以从该技术中受益的用户和工业或商业流程。这是 ISO/JTC1/SC31/WG4 所面临的标准化的全部挑战。该标准化必须允许: - 标签彼此共存,也就是说,允许在同一读取区域中携带标签的多个物体不会互相污染, - RFID 系统的互操作性,即允许多个标签使用来自不同制造商的相同频率,可以与任何读者进行通信。
OFDM(正交频分多路复用)正交频分多路复用(OFDM)用于将高速率数据流拆分为低率流,该流在许多子载体上同时传输。使用移动通信的人数不断增加,这引起了移动网络的关注。增加所涵盖的区域,数据吞吐量以及移动网络中的服务质量是一个主要问题。结果,在这方面,移动通信系统必须非常有效。要满足用户不断增长的需求,必须大大扩展当前系统。多个载波频率用于使用正交频段多路复用(OFDM)来编码数字数据。OFDM有多种用途,包括数字电视和音频传输,高速DSL Internet访问,无线网络,电源线网络和第四代移动通信。功能:❖多载波变速箱❖针对多路径褪色的鲁棒性❖频段宽度按需技术❖光谱效率
(RPMs)对实验室大鼠 Wistar 股骨间充质干细胞增殖率的影响。影响采用以下参数进行:载波频率 9.4 GHz、脉冲重复率 22、25 Hz、50–100 个脉冲、峰值功率通量密度 (pPFD) 140 W/cm 2 、1 cm 深度处 50 个脉冲的吸收能量值为 699×10 -6 J/cm 3 。通过用不同暴露模式的 RPMs 单次照射后 24 和 72 小时培养物中细胞数量的变化来评估暴露效果。根据 RPM 的脉冲重复率和脉冲数,可以观察到细胞分裂率的增加。频率为 25 Hz 且脉冲数最少(50 个脉冲)的 RPM 可最明显地刺激细胞分裂加速,并且在 72 小时后记录到最大增殖。关键词:干细胞、脂肪组织、分裂率、增殖、纳秒微波脉冲、
DL-VHQPI的低载波频率边缘解调始终需要配对的训练数据,因为使用的DNN是一个有监督的学习模型。然而,由于自相关和跨性交术语中不可避免的频谱重叠和SFD中的互相关项,很难通过以略有轴状态获得地面真相。我们设置了光路结构,如图s1(a),将其调谐到高稳定状态,并通过以下三个步骤遵守地面真相(背景)S2:1)通过阻止对象波灯路径收集参考波强度(),如图s1(b)。2)阻止参考波光路径,以限制对象波强度(),如图s1(d)。3)通过根据等式将两者一起添加在一起,以获取完整的背景术语为地面真理。(s9),细节可在图中看到s1(ⅲ)。图S1(C,E,G)也分别展示了参考波,对象波和背景的频谱。
摘要:GRACE 后续卫星携带了第一台星际激光测距干涉仪 (LRI)。在轨运行四年多后,LRI 的灵敏度超过了传统的微波仪器 (MWI)。然而,在当前的数据处理方案中,LRI 产品仍然需要 MWI 数据来确定未知的绝对激光频率,代表将原始相位测量转换为米级物理位移的“标尺”。在本文中,我们推导出精确执行从相位测量到距离的转换的公式,考虑到变化的载波频率。此外,还推导出了由于载波频率的知识不确定性以及未校正的时间偏差而导致的主要误差。在第二部分中,我们讨论了当前采用的交叉校准方案中 LRI 对 MWI 的依赖性,并提出了三种不同的 LRI 激光频率模型,其中两种模型在很大程度上独立于 MWI。此外,我们分析了热变化对尺度因子估计和 LRI-MWI 残差的贡献。推导出一种称为热耦合 (TC) 的线性模型,该模型显著降低了 LRI 和 MWI 之间的差异,使 MWI 观测限制了比较的水平。
1. 导航系统(30 分) 在本题中我们考虑 DME 无线电信标。 [a] DME 这个缩写代表什么?(3 分) 解答:DME 代表测距设备 [b] DME 系统如何工作? 在你的回答中,包括:(12 分) 1. 地面设备和机载设备(如果有)的描述, 解答:地面设备是地面应答器或信标,由天线、接收器、发射器组成。机载设备称为机载询问器。 2. DME 的基本工作原理, 解答:DME 基于测量飞机机载 DME 询问器发射的脉冲与地面 DME 应答器接收回的脉冲(固定时间延迟 50 µ s 后)之间的时间间隔。机载设备计算飞机和 DME 站之间的斜距(视距)。 3. DME 信号特性,解决方案:飞机询问器在 962 至 1213 MHz(UHF)之间的 126 个频率之一上传输脉冲。DME 通道由两个载波频率组成,始终相隔 63 MHz。例如,询问器使用 1025 MHz 载波作为询问脉冲序列,然后响应器使用 962 MHz 载波作为返回脉冲。脉冲采用 cos2 形状,在载波上进行幅度调制,成对相隔 12 µ s。每个脉冲持续 3 µ s(因此一个脉冲中大约有 3000 个载波周期)。4. DM 的不同模式
I. 引言 数字射频发射器因其相对于模拟发射器的众多优势而广受欢迎 [1]、[2]、[3]、[4]、[5]、[6]、[7]、[8]、[9]。数字发射器 (TX) 省去了大部分模拟功能,只包含一个模拟端口,即其输出。当然,这种方法依赖于高速、高线性度的数模转换器 (DAC)。DAC 的输出稳定时间必须与载波频率相称,其线性度由所需信号的可容忍失真和/或相邻信道功率比 (ACPR) 决定。后者在长期演进 (LTE) 标准等蜂窝应用中尤其具有挑战性。DAC 的非线性和无杂散动态范围 (SFDR) 已得到广泛研究 [10]、[11]、[12]、[13]、[14]、[15]。本文重点讨论 DAC 非线性和 ACPR 之间的关系。目的是提供简洁的方程,帮助设计人员决定如何选择 DAC 单元,以及在应用预失真等校正技术后可以容忍多少残余积分非线性 (INL)。第二部分涉及电流控制 DAC 的非线性分析,第三部分将其 INL 与 ACPR 联系起来。第四部分研究了当输入近似为白噪声时这些 DAC 的行为,第五部分研究了相位失真的影响。第六部分重复了开关模式架构的计算。
摘要:本文介绍了一种 40 GHz 压控振荡器 (VCO) 和分频器链,采用意法半导体 28 nm 超薄体盒 (UTBB) 全耗尽绝缘体上硅 (FD-SOI) 互补金属氧化物半导体 (CMOS) 工艺制造,具有八层金属后道工艺 (BEOL) 选项。VCO 架构基于带有 p 型金属氧化物半导体 (PMOS) 交叉耦合晶体管的 LC 谐振腔。VCO 通过利用可通过单个控制位选择的两个连续频率调谐带,展现出 3.5 GHz 的调谐范围 (TR)。在 38 GHz 载波频率下测得的相位噪声 (PN) 分别为 - 94.3 和 - 118 dBc/Hz(频率偏移为 1 和 10 MHz)。高频分频器(频率从 40 GHz 到 5 GHz)采用三个静态 CMOS 电流模式逻辑 (CML) 主从 D 型触发器级制成。整个分频器因子为 2048。低频分频器采用工作频率为 5 GHz 的 CMOS 触发器架构。VCO 核心和分频器链的功耗分别为 18 和 27.8 mW(电源电压为 1.8 和 1 V)。使用热室在三个结温(即 − 40、25 和 125 ◦ C)下验证了电路的功能和性能。