所收集的数据集与《太阳能辅助区域制冷系统设计和运行优化》[1] 论文相关。部分数据是关于系统的主要和常见组件的。其中包括太阳能集热器的单价(美元/平方米)、类型和效率;吸收式制冷机的容量(千瓦)、类型、初始成本(美元)和 COP;热水/冷冻水热能储存罐的类型、初始成本(美元)和容量(千瓦时);辅助锅炉的初始成本(美元)、容量(千瓦)、类型和效率。另一部分数据是关于卡塔尔国全年每小时制冷需求(千瓦)、卡塔尔国全年每小时全球太阳辐照度(瓦/平方米)以及生产和储存冷冻水和热水的变动成本(美元/千瓦时,美元/千瓦)。数据收集自不同的资源,例如政府网站、商业网站、政府部门、期刊和实际案例研究。这些数据的价值在于,进行此类研究所需的大部分数据都集中在一个资源中。此外,一些数据(例如年度每小时制冷需求和全球太阳辐射)无法在线获取。此外,收集的数据已经过过滤,单位一致,随时可用。最后,考虑的数据
摘要:预计未来 20 年,建筑物的能源消耗将增加 40%。电力仍然是建筑物使用的最大能源来源,对电力的需求也在不断增长。需要制定建筑能源改进策略来减轻不断增长的能源需求的影响。在建筑物中引入智能能源管理系统是一个雄心勃勃但越来越容易实现的目标,由于其在节省建筑物能源消耗成本方面的潜力,该系统正在全球各个地区和企业市场中获得发展势头。本文介绍了一种连接到双向电网的智能建筑能源管理系统 (SBEMS)。智能建筑具有热能和电能回路。风能和光伏可再生能源、电池存储系统、辅助锅炉、基于燃料电池的热电联产系统、邻近建筑物的热量共享和储热罐是智能建筑的主要组成部分。已经为拟议的 SBEMS 开发了一个约束优化模型,并使用最先进的实数编码遗传算法来解决优化问题。通过八个模拟案例强调了所提出的 SBEMS 的主要特点,同时考虑到了智能建筑组件的各种配置。此外,电动汽车充电也是有计划的,并将结果与非计划充电模式进行了比较,这表明电动汽车充电的计划进一步提高了智能建筑运营的成本效益。
随着对可持续能源技术的需求不断增长,太阳能光伏 (PV) 和热泵越来越多地应用于建筑物。混合光伏热 (PVT) 集热器已研究了几十年,但尚未在市场上取得成功。本研究将 PVT 和地源热泵 (GSHP) 串联起来用于多户住宅,并将其技术和经济性能与 GSHP 和 PV+GSHP 系统进行比较。TRNSYS 中的完整系统模型用于太阳能热泵系统,气候和经济边界条件来自瑞典市场。结果表明,减少钻孔长度和/或间距而不损失或仅损失有限的效率是添加 PVT 的最大好处,然而,发现带有 PV 的全尺寸钻孔场是成本最低的设计方案。在效率低下且辅助锅炉使用率高的系统中,添加 PVT 可能是成本最低的选择,但当空间不受限制时,它并不比 PV+GSHP 更可取。由于许多多户住宅由于缺乏钻孔空间而无法安装 GSHP,因此给定热泵效率的钻孔场面积减少是显而易见的。PVT+GSHP 系统可以为以前不在热泵市场范围内的建筑提供一种新的低碳供暖替代方案。