相变的材料由于其急剧依赖于温度的特性而有希望,并且在光学开关和传感技术中具有很高的潜力。在此类材料中,二氧化钒(VO 2)是最实用的,因为其过渡温度接近室温。基于VO 2的基于电阻率的基于电阻率的较大温度系数来检测红外辐射。但是,为了达到较大的灵敏度,活跃的辐射吸收区域必须足够大,以允许VO 2吸收的入射辐射的足够温度积累,从而需要大的像素尺寸并降低降压测定量测量的空间分辨率。此外,在大多数应用程序中,VO 2材料的吸收未针对特定频段进行优化。另一方面,可以对等离激元纳米构型进行调整和设计,以选择性,有效地吸收入射辐射的特定带,以用于局部加热和热成像。在这项工作中,我们建议将血浆纳米结构与vo 2纳米线结合在一起,以扩大由于热变化而导致阻抗变化的斜率,以达到更高的敏感性。我们通过提出的检测器对中红外电磁辐射吸收的数值分析显示,该检测器显示等离子吸收剂接近完美的吸收。此外,由于底物在热分布中起着很大的作用,预计热堆积和纳米线抗性变化是不同的底物。我们还讨论了拟议设备上VO 2纳米线的制造。我们通过我们的新型降低测量器显示出高灵敏度和超低噪声等效温度差异(NEDT)。
Detectnet 的推荐剂量为 148 MBq (4 mCi),其有效剂量 (辐射吸收) 为 4.7 mSv。对于剂量为 148 MBq (4 mCi) 的 Detectnet,对肝脏、肾脏/肾上腺和脾脏等重要器官的典型辐射剂量分别约为 24 mGy、21 mGy 和 17 mGy。由于脾脏是生理吸收量最高的器官之一,因此接受脾切除术的患者的其他器官或病理组织可能会吸收更多辐射剂量。如果在 PET 程序中同时进行 CT 扫描,则电离辐射暴露量将根据 CT 采集中使用的设置而增加。
照片控制对于推进和操纵量子材料的新功能性能是至关重要的。在这里,我们通过在子gap频率下的非平衡准粒子产生平面带中的微波增强超导性。在常规超导体中,已知通过通过费米速度确定的辐射吸收发生,但是在平坦带中很小,导致淬火的准粒子激发。引人注目的是,与常规范式相反,我们显示了通过Bloch量子几何形状启用的平坦带系统中的微波吸收,从而导致超导间隙增强,从而强调了无序平面频带超导能力的频带几何形象。具体来说,我们在有前途的候选材料的扭曲双层石墨烯中证明了这一点,并在临界温度附近发现显着的差距增强。这项工作表明,具有非平凡扁平带的材料的非平衡动力学是未来实验和理论研究的有前途的领域。
进入数字时代,人类生活的文化越来越密不可分,与使用电磁波在支持人类生活非常有用的情况下,但另一方面,它在威胁人类健康的辐射形式中也具有负面影响。只有少数人意识到,除了房间内部或外部装饰外,观赏植物具有许多好处。几种类型的观赏植物具有吸收电子设备发出的电磁辐射的能力。在这项简单的物理研究中,进行了测量,以比较几种类型的观赏植物与电磁波辐射的吸收,这些植物是Karet Kebo,Betel,betel,多汁的植物,常春藤植物和蛇植物。研究结果表明,蛇植物吸收电磁波辐射的能力比其他植物最大。对常春藤进行的研究表明,观赏植物对电磁波辐射的吸收受植物到辐射源的距离的影响,在这种情况下,观赏植物与电磁波辐射源之间的距离越接近,电磁波辐射的来源就越大,导致辐射的吸收越大,导致电子辐射的强度越大。根据指数图,电磁波辐射吸收的变化趋势显示,距离的距离增加。