OPA4H199-SEP 建立在现代放大器技术之上,使我们能够在输入端启用全共模范围,这对于监控电源轨上的电压至关重要。在监控这些电压时,如果放大器与高分辨率 ADC 配对,则失调电压对于确保通过信号链传输精确电平至关重要。OPA4H199-SEP 的失调电压为 0.895 mV (2) ,使其成为通用放大器产品组合中最精确的航天级放大器。该放大器的输出电流也具有 75 mA 的顶级性能,可用于驱动负载处的传感器,使其成为 TI 航天级通用放大器产品组合和放大器行业中输出电流最高的运算放大器。
摘要 — 本文提出了一种基于宽带隙 RF 技术设计低噪声放大器的原创方法。这些 LNA 能够承受高电磁信号(如电子战中使用的信号),同时提供高探测率。该研究介绍了基于相同策略的单级 LNA 和两级 LNA 的原始设计程序。这些自重构 LNA 可以从高探测率模式(低 NF)切换到高线性模式(高输入压缩模式 IP 1dB )。该设计策略与稳健的 LNA 设计进行了比较,后者使用更大的晶体管尺寸来提高线性度,但代价是 NF 略有下降。在放大器输入端,RF 步进应力结果已达到 30 dBm,没有任何破坏,并提供稳定的 S 参数和噪声系数。
在 22.5-23.6 GHz 和 25.25-27.5 GHz 频段运行或计划运行的移动系统的典型发射机射频发射(3 dB)带宽范围约为 143 至 865 MHz。发射机峰值输出功率范围为 0.1 W(20 dBm)至 60 W(48 dBm)。但是,根据《无线电规则》第 21.5 条,在 25.25-27.5 GHz 频率范围内,天线输入端的最大功率水平限制为 10 瓦。,并且根据《无线电规则》第 21.2 条,当天线的最大辐射方向在地球静止卫星轨道 1.5 度以内时,在 25.25-27.5 GHz 频率范围内,等效全向辐射功率限制为 24 dBW(在任何 1 MHz 频段内)。。
摘要 — 近期已有报道采用共享参考方案并实现高共模抑制比(即 CMRR > 80dB)的多通道生物信号记录系统。虽然众所周知,共享参考方案会导致生物放大器输入端的阻抗不匹配,从而限制可实现的最大 CMRR,但仍然缺乏能够对这种退化源进行定量评估的理论研究。本简报提供了由电极阵列和生物放大器组成的输入接口的等效电路模型,然后进行了完整分析以计算 CMRR 退化。本文介绍了基于先前设计和制造的 180nm CMOS 工艺的 32 通道神经记录前端的模拟结果,结果与理论结果非常吻合。
反向传播这一术语源自一篇题为“通过反向传播误差学习表征”的原始文章(Rumelhart 等人,1986 年)。这是一种机器学习算法,可调整神经网络中连接的权重,以最小化网络实际输出向量与期望输出向量之间的差异(误差)的度量。在神经科学中,术语“反向传播”是指在轴突小丘区域产生的动作电位向后传播到该神经元的输入端(突触后末端或树突棘)。还观察到,循环侧支将神经元的输出带到其输入区域。这并不一定会导致误差校正;相反,它会加强特定神经元的激发。此外,突触连接不允许动作电位从突触后末端(输入区域)跨越到突触前末端(带来传入信号的神经元的输出区域)
电源单元的输入来自交流电网,范围为 85 V AC ~ 265 V AC。保险丝 F1 直接连接到输入线,以保护系统,防止因任何故障而导致过大电流进入系统电路。接下来是压敏电阻 VAR1,它连接在输入端,用于在线路浪涌瞬变期间吸收过多的能量。桥式整流器 BR1 将交流输入整流为直流电压,由大电容 C1 和 C2 滤波。电阻 NTC1 不仅可以降低启动时的浪涌电流,还可以帮助降低线路浪涌瞬变期间大电容 C1 和 C2 上的电压升高。电感器 L1 和电容器 C1 和 C2 形成 π 滤波器以衰减 EMI 噪声。
近几十年来,随着微电子技术和计算机技术的进步,矩阵变换器 (MC) 越来越受到研究人员的关注,因为与传统的 AC-DC-AC(背对背)变换器相比,它具有诸多优势,例如:体积小、双向功率流、功率调节能力强、单位功率因数运行、不需要直流母线电容器 [1-5]。文献中通常使用文图里尼和空间矢量调制 (SVM) 方法来解决 MC 控制问题。文图里尼方法的谐波率较低。然而,降低开关损耗是 SVM 方法的主要优势 [6-8]。在 MC 的输入端使用无源滤波器对于避免电流谐波注入电网是必要的。在这种情况下,需要提出几种类型的输入滤波器来解决
使用多位逻辑器件时,输入绝不能浮动。在许多情况下,数字逻辑器件的功能或部分功能是未使用的,例如,当仅使用三输入与门的两个输入或仅使用 4 个缓冲门中的 3 个时。此类输入端不应保持未连接状态,因为外部连接处的未定义电压会导致未定义的操作状态。以下指定的规则在任何情况下都必须遵守。数字逻辑器件的所有未使用的输入必须连接到高或低偏置以防止它们浮动。应应用于任何特定未使用输入的逻辑电平取决于器件的功能。通常,它们将绑定到 Gnd 或 Vcc,以更有意义或更方便为准。
模块 1 : 4 串电池组输入端, BAT- 为电池组最低端的负极, VC1 为第一节电池正端, VC2 为第 二节电池正端, VC3 为第三节电池正端, BAT+ 为第四节电池正端(即电池组的最高极)。 CW1243 没有上电顺序要求,但建议从低节到高节依次上电,避免出现接错,反接等现象。注意 BAT- , BAT+ 在充放电过程中会有大电流,接在 BAT- , BAT+ 上的导线最好能够足够粗。 模块 2 : 电池组电压进芯片端滤波电路,电容尽量靠近芯片。 模块 3 : R SENSE 电阻,通过检测其上的电压值,计算放电过程中的电流。 模块 4 : 103AT NTC 电阻( 3435 )。 模块 5 : 充放电负端。 模块 6 : 充电正端,二极管是为防止充电器反接,如不需要,可以拆掉,用导线将两端短接。 模块 7 : P+ , P- 放电端口的稳压,续流二极管以及电容。 模块 8 : CIT 电容,控制放电过流 1 ,过流 2 延时时间电容,可以根据需要自行更换。 模块 9 : 充放电高温保护匹配电阻。 模块 10 : VINI 处滤波电路 R 以及 C ,可以适当的调节过流保护延迟时间,同时提高电流检测 精度。