摘要 — 量子通信功能的集成通常需要专用的光电元件,而这与电信系统的技术路线图并不相符。我们研究了商用相干收发器子系统在经典数据传输之后支持量子随机数生成的能力,并展示了如何将基于真空涨落的量子熵源转换为真正的随机数生成器。我们讨论了两种可能的实现方式,分别基于接收器和发射器中心架构。在第一种方案中,利用相干内差接收器中的平衡同差宽带检测来测量 90 度混合输入端的真空状态。在我们的原理验证演示中,在超过 11 GHz 的宽带宽上获得了 >2 dB 的光噪声和电噪声之间的间隙。在第二种方案中,我们提出并评估了重复使用偏振复用同相/正交调制器的监测光电二极管来实现相同目的。演示了 10 Gbaud 偏振复用正交相移键控数据传输的时间交错随机数生成。详细模型的可用性将允许计算可提取的熵,因此我们展示了两个原理验证实验的随机性提取,采用了双通用强提取器。索引术语 — 数字安全、多用途光子学、光通信设备、光信号检测、随机数生成
许多新兴的生物传感应用 [1]、[2] 以及增强现实应用的人机界面 [3] 都依赖于巨磁电阻 (GMR) 传感器,因为它们具有良好的灵敏度和低 1/f 噪声。作为替代方案,隧道磁电阻 (TMR) 传感器由于其更高的磁阻 (MR) 比可以提供比 GMR 传感器更好的灵敏度。然而,如此高的 MR 比对接口电子设备提出了严格的要求,因为它们的基极电阻变化很大。这种变化会导致放大器输入端出现较大的电压偏移,从而减小放大器的动态范围,在最坏的情况下,如果不进行补偿,会导致前端饱和。消除放大器输入直流偏移的一个可能解决方案是使用斩波电容耦合仪表放大器 (CCIA) 与直流伺服环路 (DSL) [4],参见图 1a。然而,这种方法需要在放大器的输入参考电压噪声和 DSL 可以补偿的最大偏移之间进行权衡。更具体地说,可以通过增加 C DSL 来补偿更高的输入偏移,而这又会增加 CCIA 的输入参考电压噪声 [5]。作为一种替代方案,图 1b 显示了使用跨阻放大器 (TIA) 处理产生的电流 [2] 的可能性。在这种方案中,通常需要辅助电阻
摘要 目前正在对未来基于 DGPS 的进近和着陆系统进行许多实验,以提高飞机导航的质量。在航空应用中使用 C/A 码接收器需要很高的可靠性和完整性。本研究调查了使用 C/A 码并在航空电子环境内导航的 GPS 接收器的标准定位服务的潜在电磁干扰源。来自使用与 GPS 和 G LONASS 频段相邻频率的多个通信系统的射频发射给 GNSS 接收带来了相当大的问题。过于拥挤的频谱和微弱的 GPS 信号使来自各种来源的射频干扰成为潜在威胁,必须仔细检查。本文旨在概述潜在的干扰源及其解决方案。确定了这些 RFI 源,并评估了 GPS 和 GNSS 受到这种干扰的脆弱性。这项研究定量地了解了干扰的影响。对最重要的干扰源进行了研究,研究内容包括它们的技术特性、干扰距离以及保持接收器良好性能所需的隔离或抑制要求。还研究了候选缓解技术,并建议在适当的标准中采用选定的技术。1. 引言商用 GPS 接收器可用的典型信号在天线输入端为 -160 dBW(-130 dBm,而 A RINC 规定的为 -134.5dBm),由扩频码扩展至大约 2MHz 带宽(窄相关器为 8MHz),尽管大部分功率位于中心 2MHz 部分。2MHz 中的热噪声功率(kTB)由玻尔兹曼常数 k 得出
摘要 目前正在对未来基于 DGPS 的进近和着陆系统进行许多实验,以提高飞机导航的质量。在航空应用中使用 C/A 码接收器需要很高的可靠性和完整性。本研究调查了使用 C/A 码并在航空电子环境内导航的 GPS 接收器的标准定位服务的潜在电磁干扰源。来自使用与 GPS 和 G LONASS 频段相邻频率的多个通信系统的射频发射给 GNSS 接收带来了相当大的问题。过于拥挤的频谱和微弱的 GPS 信号使来自各种来源的射频干扰成为潜在威胁,必须仔细检查。本文旨在概述潜在的干扰源及其解决方案。确定了这些 RFI 源,并评估了 GPS 和 GNSS 受到这种干扰的脆弱性。这项研究定量地了解了干扰的影响。对最重要的干扰源进行了研究,研究内容包括它们的技术特性、干扰距离以及保持接收器良好性能所需的隔离或抑制要求。还研究了候选缓解技术,并建议在适当的标准中采用选定的技术。1. 引言商用 GPS 接收器可用的典型信号在天线输入端为 -160 dBW(-130 dBm,而 A RINC 规定的为 -134.5dBm),由扩频码扩展至大约 2MHz 带宽(窄相关器为 8MHz),尽管大部分功率位于中心 2MHz 部分。2MHz 中的热噪声功率(kTB)由玻尔兹曼常数 k 得出
摘要 目前正在对未来基于 DGPS 的进近和着陆系统进行许多实验,以提高飞机导航的质量。在航空应用中使用 C/A 码接收器需要很高的可靠性和完整性。本研究调查了使用 C/A 码并在航空电子环境内导航的 GPS 接收器的标准定位服务的潜在电磁干扰源。来自使用与 GPS 和 G LONASS 频段相邻频率的多个通信系统的射频发射给 GNSS 接收带来了相当大的问题。过于拥挤的频谱和微弱的 GPS 信号使来自各种来源的射频干扰成为潜在威胁,必须仔细检查。本文旨在概述潜在的干扰源及其解决方案。确定了这些 RFI 源,并评估了 GPS 和 GNSS 受到这种干扰的脆弱性。这项研究定量地了解了干扰的影响。对最重要的干扰源进行了研究,研究内容包括它们的技术特性、干扰距离以及保持接收器良好性能所需的隔离或抑制要求。还研究了候选缓解技术,并建议在适当的标准中采用选定的技术。1. 引言商用 GPS 接收器可用的典型信号在天线输入端为 -160 dBW(-130 dBm,而 A RINC 规定的为 -134.5dBm),由扩频码扩展至大约 2MHz 带宽(窄相关器为 8MHz),尽管大部分功率位于中心 2MHz 部分。2MHz 中的热噪声功率(kTB)由玻尔兹曼常数 k 得出
对称密码学的最新趋势是,其设计要么允许有效实施侧信道和故障攻击对策,要么提供一定程度的固有保护以抵御这些物理攻击媒介。这在轻量级密码学领域尤其重要,因为轻量级密码学旨在部署在嵌入式设备中,因此物理攻击是一种现实威胁。DEFAULT 是一种轻量级对称密码,其基本结构源自 GIFT [ 10 ],由 Asiacrypt'21 [ 8 ] 提出,旨在提供针对差分故障分析 (DFA) [ 12 ] 的保护(另请参阅 [ 7 ,第 5.1 节])。提供这种保护的主要设计特征是具有线性结构的 SBox,我们将其称为 LS SBox。结果表明,无论攻击者在这种 SBox 的输入端注入多少故障,都无法准确确定输入值。 DEFAULT 的 DFA 安全性为 264 ,通常,使用相同构造,对于 n 位密码,安全性为 2 n/ 2 。量子计算的出现对密码学构成了强大的威胁。Shor 算法将密钥搜索空间复杂度降低到多项式时间,这尤其削弱了公钥算法的安全性 [32]。已有许多研究工作致力于探索公钥密码对抗量子对手的适用性,例如 [19]。通常,对称密码在量子攻击方面具有更高的安全性,Grover 算法能够通过 2 n/ 2 次查询执行完整密钥搜索。人们可能会注意到,对称密钥密码的量子安全性在设计时并未得到适当分析(基本上,量子安全性是设计者理所当然的)。例如,轻量级密码不仅在经典电路中消耗更少的资源,而且也适用于量子电路。因此,轻量级的
USB Type C 连接器带有 5.1k CC 电阻,因此它可以与任何计算机或电源配合使用,以获得 5V 和高达 1A 的独立直流或太阳能输入 - 侧面的两个垫可用于连接 5 ~ 18V 电源,可以代替 USB 使用。如果输入是太阳能电池板,充电芯片将调整电流消耗,使电压不会低于电池电压,从而优化太阳能输入。无需大电容来稳定它,并且您可以获得近 MPPT 功能,而无需 MPPT 的成本和复杂性。默认充电速率为 1A,但您可以切断正面的 IS 跳线并在背面焊接任一跳线以将速率设置为 500mA 或 250mA 所有现代单节 LiPoly 或 LiIon 电池的默认 3.7V 标称/ 4.2V 最大电池化学性质/电压。您可以通过切断正面的 VS 跳线并在背面焊接跳线,将 LiFePO4 电池的电压设置为 3.2V/3.65V 负载电源路径 - 如果在连接 USB/DC/太阳能电源时负载连接器正在吸收电流,则它将默认从充电器吸收电流,任何剩余电流都将流向电池。这样可以防止电池不断充电/放电,从而缩短电池寿命。来自 USB/DC/太阳能的最大吸收量仍然为 1A,如果您需要更多电流,它将来自电池,并且芯片可以提供从电池到负载输出高达 3A 的电流尖峰!受调节的 4.5V 最大负载输出 - 无论 USB 或 DC/太阳能输入端的电压是多少,由于内部电压调节器,负载输出端口都不会超过 4.5V。但是,在处理大电流和高直流电压时请记住这一点,因为 LDO 会使电路板开始过热并限制电流。三个状态 LED - 橙色充电 LED、红色故障 LED 和绿色电源良好 LED。充电/故障引脚也位于左侧分线板上。热敏电阻 - 切断 TH 走线,您可以将 10K 热敏电阻连接到 TH 焊盘,这将调整充电速率以防止电池过热。芯片启用可禁用充电器。安装孔!
摘要 - 光子芯片正在变得越来越可编程,并使用电子和软件重新配置了连接性。这种进化是由人工智能和量子计算应用所推动的。我们将讨论可以在更多样化的应用中部署的更多通用目的电路,类似于通用可编程电子产品。光子是世界上最喜欢的数据载体,形式是光学链接。,但越来越多的我们看到,光子信息是在芯片表面上处理的,而不仅仅是用于数据传输,还用于处理。虽然光子集成电路(PIC)大多限于非常特定的功能(例如收发器)该技术正在缓慢地发现其进入不同的应用空间。这是通过多种材料系统(例如IIII-V半导体,硅或氮化硅)中快速成熟的PIC技术平台支持的。用类似的半导体技术与电子芯片制造,这些PIC平台在芯片上支持100s或1000秒的光学构建块的密集整合。当这些构建块包含电气可调节元件时,可以主动操纵芯片的行为。结果,静态光子积分电路逐渐变得更加可调,在运行时可以调整性能或功能。当然,这需要将光子电路与电子驱动器电路集成。在过去的5年中,光子芯片上可调元素的广泛可用性导致了所谓的“可编程”光子电路。在可编程的图片中,光的路径没有预先确定。相反,该电路由连接的波导网的网格与2×2的光学门组成,由2×2耦合器组成(芯片上等效于2×2光学梁的芯片)和相位变速器(或相位变速器(或等效的光学子电路))。此类波导网格在图中绘制1。通过调整门的耦合系数,可以将光线分布在芯片上的不同波导路径上,并且随着相位变速,可以控制这些不同路径之间的干扰。结果是可以在运行时由用户控制的大量多路干涉仪。我们可以识别两个主要类别可编程的Wave-Uide网格,如图1 [1]。在仅向前的距离隔离光线,从一组输入端口到一组输出端口的一个方向传播。光学门控制
摘要 本文介绍了一种非平衡马赫-曾德干涉仪 (MZI) 固有的干涉特性,该干涉仪通过精密制造技术在绝缘体上硅平台上实现。研究深入探讨了自由光谱范围 (FSR) 与非平衡 MZI 各种长度之间的复杂关系。值得注意的是,模拟结果与实验结果的比较显示出了惊人的一致性。 关键词:马赫-曾德干涉仪、光子学、绝缘体上硅、波导 1. 简介 硅光子器件因其吸引人的特性而越来越受欢迎。小尺寸、大折射率对比度和 CMOS 兼容性是硅光子器件的特性之一,这些特性使其成为电信、生物医学等多个行业的首选器件[1]。马赫-曾德干涉仪 (MZI) 是最广泛使用的硅光子器件组件之一。在硅平台上实现的马赫-曾德尔干涉仪是各种应用的关键元件,从电信(用于光子波导开关和光子调制器)到传感和信号处理 [2]、[3]、[4]。MZI 的实用性源于其干涉特性,这是通过在 MZI 的两个臂之间产生相对相移来实现的。这种相移可以通过使用移相器或使 MZI 的两个臂的光路长度不相等来实现。MZI 的两个臂不相等的 MZI 配置称为不平衡 MZI。在本文中,我们展示了一种不平衡 MZI 设计,我们对其进行了建模、模拟和随后的制造。我们研究了几种不平衡 MZI 设计,并分析了这些设备的模拟和实验传输特性。我们阐明了波导建模的过程,并进行了分析以补偿制造变化,并详细介绍了一些数据分析。 2. 材料与方法 2.1 理论 马赫-曾德干涉仪 (MZI) 包括一个分束器和一个光束组合器,它们通过一对波导相互连接,如图 1 所示。MZI 配置包括分束器将波导输入端 (E i ) 的入射光分成波导的臂或分支。随后,光在输出端重新组合成光束
CPU由于其在处理指令中的功能而通常称为计算机的大脑。它将一系列说明转化为操作,执行基本算术,逻辑和输入/输出任务。没有CPU,计算机将无法运行软件或执行任务。CPU的体系结构和速度确定了程序运行的效率。路由器连接多个网络,并有效地指导网络流量,从而通过使用IP地址将数据包将数据包将其路由到其正确目的地,从而实现Internet访问。作为计算机的核心软件,系统软件负责监督所有其他程序并管理与硬件设备的连接,执行应用程序,并调节磁盘和内存过程。使用显示答案按钮检查答案。使用下一个测验按钮进行新问题。Q 1 a)仅1 b)仅2 c)d)d)1也不是数字计算机是计算机系统类型之一。计算机蠕虫使用计算机网络(Internet或Intranet)扩散自身。Q 4 a)仅1 b)仅2 c)d)d)d)1也没有2个媒体实验室亚洲,很大程度上强调了ICT用于教育,生计产生,医疗保健等。Q 5 a)仅1 b)仅2 c)d)d)d)1也不是2 Gopher是层次范围内的文本文件的Internet应用程序。Gopher的模型基于客户和服务器。Q 8 c)垃圾邮件发送者,一个人通过使用互联网(通常向大量用户)发送无关或未经请求的消息,以进行广告,传播恶意软件,网络钓鱼等。Q 14 c)a)仅1 b)仅2q 11 a)仅1 b)仅2 c)d)d)d)既不是1个算盘,却不是木制架,该架子固定在珠子上的平行线,并通过操纵珠子来完成计算。Q 12 c)a)仅1 b)只有2台混合计算机具有模拟和数字计算机的结合特征。混合计算机涉及输入端的数字转换的类似物,而在输出端的数字转换为数字转换。