本研究报告了一种面积高效、无电感、低噪声 CMOS 跨阻放大器的设计,适用于入门级光时域反射仪。本研究提出了一种新方法,用于在电容反馈 TIA 中实现可编程增益,使用输入级偏置阻抗和其中一个反馈电容器独立调整低频和高频行为。该方法解决了快速前馈或电阻反馈拓扑的典型噪声问题,同时缓解了关键 TIA 性能指标的权衡。提出了一种更精确的放大器模型,该模型考虑了电容隔离和两个偏置电路的影响。建议对参考设计进行进一步修改,包括基于 PMOS 的偏置电路实现,以解决电压余量问题。该电路采用标准 180 nm CMOS 工艺实现,采用 1.8 V 电源供电,电流为 11.7 mA。
第二级 第二级或中间级由 Q 16 、 Q 17 、 Q 13 B 和两个电阻器 R 8 和 R 9 组成。晶体管 Q 16 充当射极跟随器,从而使第二级具有高输入电阻。这最大限度地减少了输入级的负载并避免了增益损失。此外,添加具有 50kΩ 发射极电阻的 Q 16(类似于 Q 7 和 R 3 )可增加第一级的对称性,从而提高其 CMRR。晶体管 Q 17 充当共射极放大器,发射极中带有 100Ω 电阻。其负载由 pnp 电流源 Q 13 B 的高输出电阻与输出级的输入电阻并联组成(从 Q 23 的基极看)。使用晶体管电流源作为负载电阻(有源负载)可以获得高增益,而无需使用大电阻,因为大电阻会占用很大的芯片面积并需要很大的电源电压。
摘要 — 本摘要介绍了一种基于低温逆变器的两倍电流再利用和 40 纳米 CMOS 双噪声消除低噪声放大器 (LNA)。所提出的 LNA 由三级组成:基于电流再利用逆变器的输入级,具有分流电阻反馈和自体偏置 (SBB),可在低温下缓解 V th 增加并提高 r out。第二级是双辅助噪声消除级,带有额外的电流再利用并联晶体管,可增强跨导并抑制主放大器和辅助放大器的噪声。最后一级是共源后置放大器,可进一步增强增益。在 4 K 下,LNA 实现了 31 dB 的测量峰值增益 (S 21),具有从 10 MHz 到 2.6 GHz 的大 3-dB 带宽,在 0.6 GHz 下,功耗为 8.6 mW,最小 NF 为 0.1 dB(对应于 6.8 K 的噪声温度 TN)。该电路占用的核心面积为 0.117 mm 2 。
摘要 — 在本信中,我们介绍了一种适用于高速采样系统的基于磷化铟 (InP) 双异质结双极晶体管 (DHBT) 技术的 24 GSa/s、> 20 GHz 宽带跟踪保持放大器 (THA)。在所提出的方法中,输入级的输出极点被发射极电容/电阻衰减产生的零点抵消,从而扩展了带宽而没有压降。引入了输出级 V be 调制补偿技术以减少失真。单片微波集成电路 (MMIC) 原型仅占用 0.69 mm 2 ,实验结果表明它具有从直流到 22.3 GHz 的 0.112–f T 带宽,比使用 InP 技术的任何报道的紧凑型 THA 解决方案都要宽。此外,在 24 GSa/s 采样率下,无杂散动态范围 (SFDR) 优于 42 dB,总谐波失真 (THD) 小于 − 25 dBc。THA 功耗仅为 374 mW,是 InP 技术中报告的最低直流功耗之一。
.subckt MCP6001 in+ in- V+ V- out * 输入级 - RIN = 10T, CIN = 3p, Voffset = 4.5m R1 in+ in- 10T C1 in+ in- 3p Voffset in+ offset dc 4.5m * 增益级 - R2 = {AOL/(6.28*GBP*CPOLE)}, AOL = 400k, GBP = 1Meg, CPOLE = 1n * gm = 6.28*GBP*CPOLE, 电流限制 IMAX = +/- 0.6mA G1 0 int_gain 值={limit(0.00628*V(offset,in-),0.6m, -0.6m)} R2 int_gain 0 63.7Meg C2 int_gain 0 1n * 输出级 - 电流限制为 +/- 20mA, ROUT = 300 欧姆 G2 0 输出值 = {limit(V(int_gain, 0)/300, 20m, -20m)} R3 输出 0 300 * 输出电压限制为 V+ 和 V- D1 int_gain V+ Dlimit D2 V- int_gain Dlimit .model Dlimit D(Ron=0.0001 Roff=100G Vfwd=0) .ends MCP6001
摘要 — 演讲首先将模块化、功能集成、分散化、混合化和协同关联确定为未来电力电子转换器性能改进的关键概念(“X 概念”)。接下来,讨论了苏黎世联邦理工学院电力电子系统实验室在具有电压或电流直流链路(即升压-降压或降压-升压功能)的双向三相 AC/DC 转换器系统领域的最新研究成果。这两个系统的实现都基于 PFC 整流器输入级和 DC/DC 转换器输出级的“协同控制”,并考虑了 400V 线对线输入、200V 至 1000V 的超宽输出电压范围和 10kW 的额定功率。所述硬件演示器具有高效率和高功率密度,因此可以作为电气隔离 EV 充电器的标准构建块。此外,根据综合实验分析的结果,这两个系统都非常适合用作未来基于 RCD 的非隔离 EV 充电器。演讲最后强调了从线性经济向循环经济转变的紧迫性,未来的电力电子转换器设计也需要考虑这一点,以确保可持续地实现 2050 年净零二氧化碳目标。
摘要。SRGB图像现在是计算机视觉研究中预训练视觉模型的主要选择,这是由于它们的易用性和效果存储。同时,原始图像的优点在于它们在可变的现实世界中的较丰富的物理信息。对于基于相机原始数据的计算机视觉任务,大多数现有研究采用了将图像信号处理器(ISP)与后端网络集成的方法,但经常忽略ISP阶段和后续网络之间的相互作用功能。从NLP和CV区域中正在进行的适配器研究中汲取灵感,我们介绍了Raw-Adapter,这是一种旨在将SRGB预先训练的模型调整为相机原始数据的新颖方法。RAW-ADAPTER包括输入级适配器,这些适配器采用可学习的ISP阶段来进行AD-RAW输入,以及模型级别的适配器,以在ISP阶段和随后的高级网络之间建立连接。此外,Raw-Adapter是一个可以在各种Compoter Vision Frameworks中使用的通用框架。在不同的照明条件下进行了丰富的实验,已经显示了我们算法的最先进(SOTA)绩效,证明了其在一系列现实世界和合成数据集中的有效性和效率。代码可在此URL上找到。
了解正反馈和负反馈系统所需的功能。 UNIT I PN 结器件 9 PN 结二极管 – 结构、操作和 VI 特性、扩散和过渡电容 - 削波和钳位电路 - 整流器 – 半波和全波整流器 – 显示设备 - LED、激光二极管、齐纳二极管特性 - 齐纳反向特性 – 齐纳作为稳压器 UNIT II 晶体管和晶闸管 9 BJT、JFET、MOSFET – 结构、操作、特性和偏置 UJT、晶闸管和 IGBT - 结构和特性。 UNIT III 放大器 9 BJT 小信号模型 – CE、CB、CC 放大器分析 – 增益和频率响应 – MOSFET 小信号模型 – CS 和源极跟随器分析 – 增益和频率响应单元 IV 多级放大器和差分放大器 9 BIMOS 级联放大器、差分放大器 – 共模和差模分析 – FET 输入级 – 单调谐放大器 – 增益和频率响应 – 中和方法、功率放大器 – 类型(定性分析)。单元 V 反馈放大器和振荡器 9 负反馈的优点 – 电压/电流、串联、并联反馈 – 正反馈 – 振荡条件、相移 – 维恩电桥、哈特利、考毕兹和晶体振荡器。
由于电信、医疗、计算机和消费电子等所有市场领域对便携式应用的更小尺寸和更长电池寿命的需求不断增长,低压低功耗硅片系统的发展趋势日益增长。运算放大器无疑是模拟电子电路中最有用的设备之一。运算放大器的构建复杂程度各不相同,可用于实现从简单的直流偏置生成到高速放大或滤波等功能。仅需少量外部元件,它就可以执行各种模拟信号处理任务。运算放大器是当今使用最广泛的电子设备之一,被用于各种消费、工业和科学设备中。运算放大器,通常称为运算放大器,是模拟电子电路中使用最广泛的构建模块之一。运算放大器是一种线性器件,它不仅具有理想直流放大所需的几乎所有特性,还广泛用于信号调节、滤波和执行数学运算,如加、减、积分、微分等。运算放大器通常是一个 3 端器件。它主要由一个反相输入端(在运算放大器符号中用负号(“-”)表示)和一个同相输入端(用正号(“+”)表示)组成。这两个输入端的阻抗都非常高。运算放大器的输出信号是两个输入信号之间的放大差,或者换句话说,是放大的差分输入。通常,运算放大器的输入级通常是差分放大器。运算放大器是一种具有相当高增益的直流耦合差分输入电压放大器。在大多数一般
摘要 第 1 章:简介 欧洲海上风能协调行动 [CA-OWEE] 项目的目标是通过收集和评估来自整个欧洲的信息来确定欧洲海上风能的现状,并将所得知识传播给所有感兴趣的人,以帮助促进该行业的发展。该项目由欧盟委员会资助,将于 2001 年底完成。所收集的知识将通过互联网网站、研讨会和印刷报告免费提供。该项目将海上风能分为五个主题集群,回顾了近期历史并总结了当前的情况,涉及:集群 1 海上技术,风力涡轮机和支撑结构,集群 2 电网集成,能源供应和融资,集群 3 资源和经济,集群 4 活动和前景,集群 5 社会认可,环境影响和政治。这些调查的结论随后被用于为欧洲未来的 RTD 战略提出建议。该项目的 17 个合作伙伴来自 13 个国家,因此覆盖了欧洲共同体的大部分海岸线。合作伙伴涵盖了广泛的专业知识,包括开发商、公用事业、顾问、研究机构和大学。第 2 章:海上技术 本章的目的是分析海上风力涡轮机技术的当前最新技术水平并确定预期的技术趋势。风力涡轮机尺寸:海上应用的转子直径和额定功率不断增加。商用涡轮机的直径范围为 65 - 80 m 和 1.5 - 2.5 MW。原型正在开发中,其值分别高达 120 m 和 5 MW。看来,目前最大的机器(特别是针对海上市场)利用的叶尖速度明显高于陆上机器。通常会增加 10% 到 35%,叶尖速度最高可达 80 米/秒。增加叶尖速度可降低扭矩、减轻质量,从而降低塔顶系统的成本。成本:在设计风格、技术进步状态和设计规范真正相似的情况下,大型涡轮机的成本可能与转子直径成立方比例。然而,考虑到机器尺寸范围内的历史数据,正在进行的技术开发导致比例更接近平方定律而不是立方定律。陆上机器的价格数据显示,转子直径为 40 米及以上的每千瓦成本缓慢上升。尽管陆上设计的海上化通常会增加 10% 的成本,但目前可用的特定海上机器的成本曲线基本上低于陆上前辈。叶片技术:对低实度高强度叶片的需求,加上碳纤维成本的下降,可能会推动行业向碳环氧树脂方向发展。碳价格正在下降,如果在海上机器的叶片中大量使用碳,这将成为迄今为止高质量碳纤维的最大出口,从而进一步降低成本。变速箱:目前尚不清楚当前的变速箱概念(三级单元、输入级行星齿轮、两个与斜齿轮平行的高速级)是否适用于更大的海上涡轮机,因为对于> 3MW 的大型机器,可能需要额外的变速箱级,从而增加复杂性和故障概率。这可能是直接驱动系统的重要驱动力。