摘要 濒危物种的低遗传变异和近亲繁殖是由于近期种群数量下降造成的。对濒危种群进行基因筛查有助于评估它们灭绝的脆弱性,并为保护工作制定明智的管理行动。豹(Panthera pardus)是一种高度通用的捕食者,目前有 8 个不同的亚种。然而,极度濒危的阿拉伯豹(P. p. nimr)的基因组数据仍然缺乏。在这里,我们对两只阿拉伯豹的全基因组进行了测序,并组装了迄今为止最完整的豹基因组数据集。我们的系统基因组学分析表明,豹分为两个截然不同的演化支:非洲豹和亚洲豹。保护基因组分析表明,种群数量长期下降,导致近亲繁殖和纯合性增加,从而清除了两个阿拉伯个体中的有害突变。我们的研究是首次尝试从遗传学角度为这种极度濒危亚种的圈养繁殖计划提供信息。
“这项研究的动机是量化纯种马的遗传变异和近亲繁殖程度,”马丁-加顿 CAFE 的马克斯韦尔 H. 格鲁克马研究中心教授、这项研究的主要作者欧内斯特·贝利说。“通过识别趋势,我们为饲养者提供了必要的数据,使他们能够做出明智的选择,保护品种的健康和性能。”
DNA 测序技术的进步使得对数千个个体的全基因组进行测序成为可能,并为每个个体提供数百万个单核苷酸多态性 (SNP)。这些数据与精确和高通量的表型分析相结合,使全基因组关联研究 (GWAS) 和识别具有复杂遗传结构特征的 SNP 成为可能。识别出的因果 SNP 和估计的等位基因效应随后可用于育种计划中的高级标记辅助选择 (MAS)。但这种 MAS 能否与广泛使用的基因组选择 (GS) 相媲美?这个问题对于冗长的树木育种策略尤其有意义。在这里,我们使用新软件“SNPscan breeder”,模拟了一个简单的树木育种计划,并比较了不同选择标准对遗传增益和近亲繁殖的影响。此外,我们评估了育种种群中个体之间的不同遗传结构和不同亲缘关系水平。有趣的是,除了后代测试外,使用 gBLUP 的 GS 在几乎所有模拟场景下都表现最佳。仅当在大量无亲缘关系的个体(约 10,000 个个体)中估计等位基因效应时,基于 GWAS 结果的 MAS 才优于 GS。值得注意的是,使用 3,000 种极端表型的 GWAS 表现与使用 10,000 种表型一样好。与子代测试和基于 GWAS 的选择相比,GS 增加了近亲繁殖,因此更强烈地降低了遗传多样性。我们讨论了对树木育种计划的实际意义。总之,我们的分析进一步支持了 GS 在林木育种和改良方面的潜力,尽管 MAS 在未来可能会随着测序成本的降低而变得更加重要。
据说,重要的牲畜驯化发生在从事早期农业的定居社区(Cucchi 和 Arbuckle,2021 年)。早在公元前 10,500 至 10,000 年,绵羊、山羊、猪和牛就被驯化了(Colledge 等人,2013 年)。用于改良品种的最早的动物生物技术涉及育种,尤其是在牲畜和鱼类方面。英国农民罗伯特·贝克韦尔 (Robert Bakewell) (1725-1795) 是第一个通过系统选择和近亲繁殖成功应用绵羊和牛育种来改善羊毛和肉质的人。(Wood,1973 年)。从那时起,人们进行了各种育种活动,例如,在奶牛中,以提高其产奶量、蛋白质组成、生育能力、寿命和乳腺炎抗性。
小麦 ( Triticum spp,特别是 T. aestivum L.) 是一种必需的谷物,人类和动物的营养需求不断增加。因此,有必要利用现代育种技术以及行之有效的方法来提高小麦的产量和遗传增益,以实现必要的生产力提高。这些现代技术将使育种者能够更快、更有效地开发优良小麦品种。本综述旨在强调全球小麦育种中使用的新兴技术趋势,重点是提高小麦产量。本文讨论了引入变异(物种间杂交、合成小麦和杂交;转基因小麦;转基因和基因编辑)、近亲繁殖(双单倍体 (DH) 和快速育种 (SB))、选择和评估(标记辅助选择 (MAS)、基因组选择 (GS) 和机器学习 (ML))和杂交小麦的关键技术,以强调当前小麦育种的机遇以及未来小麦品种的开发。
一般信息:一头公牛通常在任何一个周期内与 60% 的母牛交配并受孕。因此,如果一头公牛与一群母牛交配三个 (3) 个周期(63 天),它应该至少能让 93% 的母牛怀孕。我们使用 AI 的原因:· 保持已死亡公牛的基因可用性。· 保持已受伤且无法再与母牛进行自然交配的公牛的基因可用性。· 为防止公牛损失及其随后的基因损失提供保险。· 允许使用一头公牛来管理大量母牛。· 提供岛上没有的牛品种。· 避免饲养公牛的成本和风险(母牛受伤、饲养员、饲料成本等)。· 提供可能不可用或购买成本过高的基因优良公牛。 · 允许因任何原因而无法与公牛交配的母牛繁殖。· 降低性病和外来疾病的传播风险。· 降低遗传性基因缺陷的传播风险。· 通过扩大岛上动物的基因库来防止近亲繁殖。· 减少与从海外引进公牛相关的成本、繁文缛节和运输问题(例如检疫、检测等)。
许多牲畜物种的高维基因组信息的获取正在加速。这不仅得益于基因分型成本的不断降低,还得益于利用基因组信息创造更高投资回报的可用服务的扩展。单个动物的基因组信息有许多用途,包括 (1) 亲子鉴定和发现、(2) 可追溯性、(3) 核型分析、(4) 性别决定、(5) 报告和监测导致重大影响或先天缺陷的突变、(6) 更好地评估个体的近亲繁殖和个体之间的共同祖先、(7) 交配建议、(8) 确定品种组成、(9) 实现精准管理,以及 (10) 基因组评估;基因组评估利用全基因组的基因型信息来提高预测动物(以及其后代)遗传价值的准确性。基因组数据也为研究提供了巨大的资源,尽管这项研究的成果如果成功,最终应该通过前面提到的十个应用之一来实现。本文描述了从样本采购到识别错误基因型的整个基因型生成过程,以及在开发用于实际应用的定制基因分型面板时应考虑的步骤。2023 作者。由 Elsevier BV 代表动物联盟出版。这是一篇根据 CC BY 许可证开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
随着物种扩大其地理范围,定居种群面临着新的生态条件,例如新环境和有限的配偶,并因瓶颈和突变负荷积累而遭受人口变化的进化后果。自交通常出现在物种范围边缘,除了抵消配偶的缺乏之外,据推测它还通过增加纯合性和清除来抵抗负荷积累的进化优势。我们研究自交如何通过清除和/或定居速度影响范围扩展过程中遗传负荷的积累。通过模拟,我们解开了由于人口统计学和自交引起的近亲繁殖效应,发现自交者扩张得更快,但仍然会积累负荷,无论交配系统如何。然而,导致这种负荷的变异的严重程度在不同的交配系统中有所不同:较高的自交率会清除大效应的隐性变异,留下较小效应的等位基因负担。我们使用来自避难异交种群和扩大自交种群的全基因组序列,将这些预测与混合交配植物高山南芥 (Arabis alpina) 进行比较。实证结果表明,自交种群中扩张负荷的积累以及清除的证据,与我们的模拟结果一致,这表明虽然清除是自交在范围扩展过程中进化的一项好处,但它不足以防止因范围扩展而导致的负荷积累。
背景:家族性噬血细胞性淋巴组织细胞增生症 (FHLH) 是一种遗传性、危及生命的疾病。该病已确定有五种类型,此外还有以 HLH 为典型表现的先天性免疫缺陷综合征。中东地区关于此病的文献非常稀少,只有少数零散报道。方法:我们报告了过去 10 年卡塔尔 28 名被诊断患有原发性和家族性 HLH 的患者的详细人口统计学、临床和基因组数据。对卡塔尔基因组计划 (QGP) 队列中的 14,669 名卡塔尔个体中的 12 种原发性和家族性 HLH 致病基因的有害变异的等位基因频率进行了评估。结果:15 名患者获得了基因诊断,发现穿孔素 1 ( PRF1 )、UNC13D 、LYST 和 RAB27A 基因中有四种新的突变。我们在这 12 个基因中发现了 22,945 个在卡塔尔 GP 中显著富集的低/高/中等/修饰影响变异。我们患者队列中发现的 PRF1 中的 rs1271079313 变异和 RAB27A 中的 rs753966933 变异在卡塔尔 GP 中显著更为普遍,与基因组聚合数据库 (gnomAD) 数据库相比,卡塔尔人群的携带者频率较高。结论:我们在海湾地区建立了第一个原发性和家族性 HLH 登记处,并发现了在卡塔尔人群中频率较高的新型可能致病变异,可用于筛查目的。提高对原发性和家族性 HLH 的认识并在卡塔尔高度近亲繁殖人群中实施筛查活动,可以带来更全面的婚前和产前评估以及更快的诊断。